ESRF celebrates 30 years of science, 30 years of international collaboration

The ESRF celebrates its 30th anniversary in the presence of the representatives of its 22 partner countries. This event looks back at ESRF’s scientific accomplishments but also on the role that the ESRF has played in fostering peaceful cross-border collaboration in Europe and beyond.

“Congratulations on 30 years of success; here is to 30 more to come,” said Carlos Moedas, European Commissioner for Research, Science and Innovation, in a video message.

“ESRF is a shining example of what can be achieved when people of different nationalities and cultures come together to pursue a common goal, to push back the frontiers of science,” said ESRF Director General Francesco Sette. “In drawing up the ESRF Convention, back in 1988, the ESRF’s founding fathers established a unique model for scientific and technological excellence. Today, with 22 partner countries, and by bringing together scientists from all over the world, the ESRF continues to demonstrate how science unites nations and contributes to addressing complex global challenges facing our society.”

2018 holds a particular significance for the ESRF as the facility celebrates its 30th anniversary. In 1988, 11 countries joined forces to create the first third-generation synchrotron light source: a dream became a reality. Thirty years later, the ESRF has broken records for the brilliance and stability of its X-ray beams, for its scientific output (over 32 000 publications, i.e., around 2 000 publications per year during the last ten years, and four Nobel prize laureates), and for the strength of its community of users (about 10 000 scientific visits per year with users from 50 different countries).

>Read more on the European Synchrotron (ESRF) website

 

PHELIX beamline – undulator installation and hutch construction

The PHELIX beamline construction continues. In October 2018 the light source for the beamline – an undulator – was installed in the storage ring. In November construction of the an optical hutch ended.

The hutch will protect people from radiation hazards. In the near future it will house the first optical components of the beamline.
The next planned steps are the installation of the front-end, i.e. the part of the beamline situated in the storage ring tunnel after the source (January 2019), the installation of the beamline with optical components for X-rays (February-March 2019) and the installation of the end-station (May-June 2019).

The PHELIX beamline will use soft X-rays. Its end station will enable a wide range of spectroscopic and absorption studies characterized by different surface sensitivity. In addition to collecting standard high-resolution spectra, it will allow, for example, to map the band structure in three dimensions and to detect electron spin in three dimensions. Users will, therefore, be able to conduct research on new materials, thin films and multilayers systems, catalysts and biomaterials, surface of bulk compounds, spin polarized surface states, as well as chemical reactions taking place on the surface.

>Read more on the SOLARIS website

Image credit: Agata Chrześcijanek

Light-activated, single- ion catalyst breaks down carbon dioxide

X-ray studies reveal structural details that may point the way to designing better catalysts for converting pollutant gas into useful products

A team of scientists has discovered a single-site, visible-light-activated catalyst that converts carbon dioxide (CO2) into “building block” molecules that could be used for creating useful chemicals. The discovery opens the possibility of using sunlight to turn a greenhouse gas into hydrocarbon fuels.

The scientists used the National Synchrotron Light Source II, a U.S. Department of Energy (DOE) Office of Science user facility at Brookhaven National Laboratory, to uncover details of the efficient reaction, which used a single ion of cobalt to help lower the energy barrier for breaking down CO2. The team describes this single-site catalyst in a paper just published in the Journal of the American Chemical Society.

Converting CO2 into simpler parts—carbon monoxide (CO) and oxygen—has valuable real-world applications. “By breaking CO2, we can kill two birds with one stone—remove CO2 from the atmosphere and make building blocks for making fuel,” said Anatoly Frenkel, a chemist with a joint appointment at Brookhaven Lab and Stony Brook University. Frenkel led the effort to understand the activity of the catalyst, which was made by Gonghu Li, a physical chemist at the University of New Hampshire.

>Read more on the NSLS-II at Brookhaven National Laboratory website

Image: National Synchrotron Light Source II (NSLS-II) QAS beamline scientist Steven Ehrlich, Stony Brook University (SBU) graduate student Jiahao Huang, and Brookhaven Lab-SBU joint appointee Anatoly Frenkel at the QAS beamline at NSLS-II.

HZB builds undulator for SESAME in Jordan

The Helmholtz-Zentrum Berlin is building an APPLE II undulator for the SESAME synchrotron light source in Jordan. The undulator will be used at the Helmholtz SESAME beamline (HESEB) that will be set up there by five Helmholtz Centres. The Helmholtz Association is investing 3.5 million euros in this project coordinated by DESY.
SESAME stands for “Synchrotron Light for Experimental Science and Applications in the Middle East” and provides brilliant X-ray light for research purposes. The third-generation synchrotron radiation source became operational in 2017. Egypt, Iran, Israel, Jordan, Pakistan, the Palestinian Authority, Turkey, and Cyprus are cooperating on this unique project to provide scientists from the Middle East with access to one of the most versatile tools for research.

New beamline for soft x-rays

Thus far, SESAME has four beamlines and will now receive a fifth meant to generate “soft” X-ray light in the energy range between 70 eV and 1800 eV. This X-ray light is particularly suitable for investigating surfaces and interfaces of various materials, for observing certain chemical and electronic processes, and for non-destructive analysis of cultural artefacts. The new beamline will be constructed as the Helmholtz SESAME Beamline (HESEB) by the Helmholtz Centres DESY (coordinating Centre), Forschungszentrum Jülich, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Helmholtz-Zentrum Berlin (HZB) as well as the Karlsruhe Institute of Technology (KIT).

>Read more on the Bessy II at HZB website

Image: The APPLE II UE56 double undulator generates brilliant light with variable polarization.
Credit: HZB

New research helps pursuit for malaria vaccine

Scientists from The Hospital for Sick Children (SickKids) identify structure of key malaria protein

Using technology available at the Canadian Light Source synchrotron, SickKids scientists have taken an important step forward on the path to finding effective biomedical interventions to halt the spread of malaria, a disease that affected an estimated 216 million people worldwide in 2016 alone.

Jean-Philippe Julien, a scientist in the Molecular Medicine program at SickKids, and his colleagues focused on a molecule known to be essential for the malaria parasite Plasmodium falciparum to go through the sexual stages of its lifecycle. Disrupting that stage of the lifecycle has the potential to reduce infections and deaths from malaria because parasite transmission between humans would be blocked by inhibiting parasite development in the Anopheles mosquito.

“The protein we looked at was identified several years ago as an important target for malaria parasite biology,” says Julien, who is also a Canada Research Chair in Structural Immunology and an Assistant Professor in the Departments of Biochemistry and Immunology at the University of Toronto. “The field has tried for over a decade to clarify its structure in order to guide the development of biomedical interventions that can curb the spread of malaria.”

>Read more on the Canadian Light Source website

Image: One of the structures of the malaria protein (orange) being recognized by the humanized blocking antibody (green and blue).

First users on VMXm

First users from the University of Southampton investigated proteins involved in nutrient uptake of photosynthetic or cyanobacteria to understand how these phytoplankton thrive under scarce nutrient conditions.

The work has immense global significance for biofuels production and biotechnology. This beamline marks the completion of Diamond’s original Phase III funding on time and within budget.

First users have now been welcomed by Diamond Light Source, the UK’s national synchrotron light source on its new VMXm beamline. The Versatile Macromolecular Crystallography micro/nanofocus (VMXm) beamline becomes the 32nd operational beamline to open its doors to users, completing the portfolio of seven beamlines dedicated to macromolecular crystallography.
The unique VMXm beamline represents a significant landmark for Diamond. It is a specialist tuneable micro/nanofocus macromolecular crystallography (MX) beamline, with an X-ray beam size of less than 0.5 microns, allowing even the tiniest of samples to be analysed. Integrated into the ‘in vacuum’ sample environment is a scanning electron microscope, making VMXm a hybrid X-ray/cryoEM instrument for detecting and measuring data from nanocrystals. VMXm is aimed at research applications where the production of significant quantities of protein and crystals is difficult.

>Read more on the Diamond Light Source website

Image: Principal Beamline Scientist Dr Gwyndaf Evans with his team Dr Jose Trincao, Dr Anna Warren, Dr Emma Beale and Dr Adam Crawshaw. First users – Dr Ivo Tews from Biological Sciences at the University of Southampton and joint Diamond-Southampton PhD student Rachel Bolton investigating proteins involved in nutrient uptake of photosynthetic or cyanobacteria.

Scientists produce 3-D chemical maps of single bacteria

Researchers at NSLS-II used ultrabright x-rays to generate 3-D nanoscale maps of a single bacteria’s chemical composition with unparalleled spatial resolution.

Scientists at the National Synchrotron Light Source II (NSLS-II)—a U.S. Department of Energy (DOE) Office of Science User Facility at DOE’s Brookhaven National Laboratory—have used ultrabright x-rays to image single bacteria with higher spatial resolution than ever before. Their work, published in Scientific Reports, demonstrates an x-ray imaging technique, called x-ray fluorescence microscopy (XRF), as an effective approach to produce 3-D images of small biological samples.

“For the very first time, we used nanoscale XRF to image bacteria down to the resolution of a cell membrane,” said Lisa Miller, a scientist at NSLS-II and a co-author of the paper. “Imaging cells at the level of the membrane is critical for understanding the cell’s role in various diseases and developing advanced medical treatments.”
The record-breaking resolution of the x-ray images was made possible by the advanced capabilities of the Hard X-ray Nanoprobe (HXN) beamline, an experimental station at NSLS-II with novel nanofocusing optics and exceptional stability.
“HXN is the first XRF beamline to generate a 3-D image with this kind of resolution,” Miller said.

>Read more on the NSLS-II at Brookhaven National Laboratory website

Image: NSLS-II scientist Tiffany Victor is shown at the Hard X-ray Nanoprobe, where her team produced 3-D chemical maps of single bacteria with nanoscale resolution.