When vibrations increase on cooling: Anti-freezing observed

An international team has observed an amazing phenomenon in a nickel oxide material during cooling: Instead of freezing, certain fluctuations actually increase as the temperature drops. Nickel oxide is a model system that is structurally similar to high-temperature superconductors. The experiment, which was carried out at the Advanced Light Source (ALS) in California, shows once again that the behaviour of this class of materials still holds surprises.

In virtually all matter, lower temperatures mean less movement of its microscopic components. The less heat energy is available, the less often atoms change their location or magnetic moments their direction: they freeze. An international team led by scientists from HZB and DESY has now observed for the first time the opposite behaviour in a nickel oxide material closely related to high-temperature superconductors. Fluctuations in this nickelate do not freeze on cooling, but become faster.

Read more on the HZB website

Image: The development of this speckle pattern over time reveals microsocopic fluctuations in the material.

Credit: © 10.1103/PhysRevLett.127.057001

Water as a metal

Under normal conditions, pure water is an almost perfect insulator. Water only develops metallic properties under extreme pressure, such as exists deep inside of large planets. Now, an international collaboration has used a completely different approach to produce metallic water and documented the phase transition at BESSY II. The study is published now in Nature.

Every child knows that water conducts electricity – but this refers to “normal” everyday water that contains salts. Pure, distilled water, on the other hand, is an almost perfect insulator. It consists of H2O molecules that are loosely linked to one another via hydrogen bonds. The valence electrons remain bound and are not mobile. To create a conduction band with freely moving electrons, water would have to be pressurised to such an extent that the orbitals of the outer electrons overlap. However, a calculation shows that this pressure is only present in the core of large planets such as Jupiter.

Providing electrons

An international collaboration of 15 scientists from eleven research institutions has now used a completely different approach to produce a aqueous solution with metallic properties for the first time and documented this phase transition at BESSY II. To do this, they experimented with alkali metals, which release their outer electron very easily.

Read more on the HZB website

Image: The picture on the top left shows an NaK drop in a vacuum without water vapour. The other pictures show the development of this drop over time when water vapour is present. Thus, a gold-coloured layer of metallic water forms first, followed by white spots of alkali hydroxide. After about 10 seconds, the drop falls.

Credit: © HZB/Nature

X-ray unveils the creation process of materials on several length scales

Nanostructuring often makes materials very powerful in many applications. Some nanomaterials take on the desired complex structures independently during their creation process. Scientists from the University of Hamburg, DESY, ESRF and the Ludwig Maximilians University in Munich have studied the formation of cobalt oxide crystals just a few nanometers in size and how they assemble, while they are still being formed. The results are published in Nature Communications.

Nanomaterials have special properties that make them more effective than conventional materials in various applications. In sensors and catalysts (in green energy production, such as water splitting into energy-rich hydrogen and oxygen) the important chemical processes happen at the surface. Nanostructured materials, even in small amounts, provide a very large surface and are therefore suitable for this kind of applications.

Further potential arises due to the variety of shapes and material combinations that are conceivable on the nanoscale. However, establishing the exact shape of these nanostructures can be a tedious process. Researchers focus on nanocrystals that independently form complex structures without any external influence, for example by sticking together (assembling). This increases their effectiveness in important technological applications, such as green energy generation or sensor technology.

“Often nanoparticles arrange themselves independently, as if following a blueprint, and take on new shapes,” explains Lukas Grote, one of the main authors of the study and scientist at DESY and the University of Hamburg. “Now, however, we want to understand why they are doing this and what steps they go through on the way to their final form. That is why we follow the formation of nanomaterials in real time using high-intensity X-rays. ” For some of the experiments, the researchers used the European Synchrotron Radiation Facility (ESRF) and DESY’s synchrotron radiation source PETRA III.

Read more on the ESRF website

Image: X-rays from a synchrotron radiation source are both attenuated (absorbed) and deflected (scattered) by matter. Depending on which of these interactions is measured with a certain X-ray technology, conclusions can be drawn about different stages of the development process of a nanomaterial. If you combine both X-ray absorption and X-ray scattering, you can decipher all the steps from the starting material (left) to the fully assembled nanostructures (right).

Credit: Nature Communications

Main Attraction: Scientists Create World’s Thinnest Magnet

The development of an ultrathin magnet that operates at room temperature could lead to new applications in computing and electronics – such as high-density, compact spintronic memory devices – and new tools for the study of quantum physics.

The ultrathin magnet, which was recently reported in the journal Nature Communications, could make big advances in next-gen memory devices, computing, spintronics, and quantum physics. It was discovered by scientists at the Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) and UC Berkeley.

“We’re the first to make a room-temperature 2D magnet that is chemically stable under ambient conditions,” said senior author Jie Yao, a faculty scientist in Berkeley Lab’s Materials Sciences Division and associate professor of materials science and engineering at UC Berkeley.

“This discovery is exciting because it not only makes 2D magnetism possible at room temperature, but it also uncovers a new mechanism to realize 2D magnetic materials,” added Rui Chen, a UC Berkeley graduate student in the Yao Research Group and lead author on the study.

Read more on the ALS website

Image: Illustration of magnetic coupling in a cobalt-doped zinc-oxide monolayer. Red, blue, and yellow spheres represent cobalt, oxygen, and zinc atoms, respectively.

Credit: Berkeley Lab

Scientists break record while battling antibiotic resistance

Drug-resistant diseases could cause up to 10 million deaths a year by 2050, according to the World Health Organization. Scientists used the Canadian Light Source (CLS) at the University of Saskatchewan to better understand how current antibiotics work and how we might curb bacterial resistance to these life-saving drugs.

Many new antibiotics are able to kill infection-causing bacteria by binding to these bacteria’s ribosomes, which are the essential machines that make proteins. In order to see exactly what antibiotics do at an atomic level, researchers from McGill University used the CLS to determine the physical structure of a ribosome as it interacted with one of the newest antibiotics.

To understand how some bacteria are already resistant to this new antibiotic, they also determined how the drug interacts with a key bacterial enzyme that causes the resistance. The results were recently published in Nature Communications Biology.

Visualizing the antibiotic bound to the ribosome, which is a complex with 300,000 atoms, was a feat that took the team roughly five years to complete. In the process, the scientists broke the record for the largest structure ever analyzed using the CMCF beamline at the CLS, which is the only facility of its kind in Canada. The previous record, set in 2013, was for a structure six times smaller.

Read more on the CLS website

Image: Dr Albert Berghuis

Credit: Canadian Light Source

The Middle East synchrotron officially opens MS beamline

The 8th of July 2021 marked the inauguration of SESAME’s Materials Science (MS) beamline. The Ambassador of Switzerland to Jordan, H.E. Mr. Lukas Gasser, along with members of his embassy team, and UNESCO’s Representative to Jordan, Ms. Min Jeong Kim, were welcomed to the inaugural ceremony by the Director General of SESAME, Professor Khaled Toukan, and the Directors of SESAME. 

In his welcoming remarks, Khalid Toukan pointed out that the beamline now allowed the users of SESAME to obtain diffraction data of a quality unparalleled in any laboratory in the region.

The MS beamline is heavily based on the MS X04SA beamline previously in operation at the Swiss Light Source, and its donation to SESAME by the Paul Scherrer Institute (PSI) has resulted in SESAME having a powerful and extremely precise tool to investigate matter at the micro-, nano- and atomic-scale.

A ribbon officially inaugurating the beamline was cut by H.E. Mr. Lukas Gasser and Professor Khaled Toukan, together with Ms. Min Jeong Kim.

Work on the MS beamline had started in 2015, with the adaptation of the design of the MS X04SA beamline to the characteristics of SESAME’s machine. In 2016, after receiving the donation of another major component, a detector from the Swiss company Dectris, execution of the project was fast-tracked, and the installation phase took place between 2017 and 2019, which is when SESAME received a diffractometer for the beamline as a donation from the Diamond Light Source. Upon sourcing the necessary equipment, the MS beam was first delivered to SESAME’s experimental station at the end of 2019. Fine tuning and characterization of its performance continued during the Covid-19 pandemic, and in December 2020, the beamline started hosting its first users. A first paper utilizing data taken at the MS beamline has already been published in a high-impact journal.

Read more on the SESAME website

Image: Cutting the ribbon of the MS Beamline (left to right): the Director General of SESAME, Professor Khaled Toukan, the UNESCO Representative to Jordan Ms. Min Jeong Kim, and the Ambassador of Switzerland to Jordan, H.E. Mr. Lukas Gasser   Note: all picture participants are Covid-19 Vaccinated.

Credit: © SESAME 2021

Understanding the physics in new metals

Researchers from the Paul Scherrer Institute PSI and the Brookhaven National Laboratory (BNL), working in an international team, have developed a new method for complex X-ray studies that will aid in better understanding so-called correlated metals. These materials could prove useful for practical applications in areas such as superconductivity, data processing, and quantum computers. Today the researchers present their work in the journal Physical Review X.

In substances such as silicon or aluminium, the mutual repulsion of electrons hardly affects the material properties. Not so with so-called correlated materials, in which the electrons interact strongly with one another. The movement of one electron in a correlated material leads to a complex and coordinated reaction of the other electrons. It is precisely such coupled processes that make these correlated materials so promising for practical applications, and at the same time so complicated to understand.

Strongly correlated materials are candidates for novel high-temperature superconductors, which can conduct electricity without loss and which are used in medicine, for example, in magnetic resonance imaging. They also could be used to build electronic components, or even quantum computers, with which data can be more efficiently processed and stored.

Read more on the BNL website

Image: Brookhaven Lab Scientist Jonathan Pelliciari now works as a beamline scientist at the National Synchrotron Light Source II (NSLS-II), where he continues to use inelastic resonant x-ray scattering to study quantum materials such as correlated metals.

Credit: Jonathan Pelliciari/BNL

Diamond-II programme set to transform UK science

Diamond Light Source has established itself as a world-class synchrotron facility enabling research by leading academic and industrial groups in physical and life sciences. Diamond has pioneered a model of highly efficient and uncompromised infrastructure offered as a user-focussed service driven by technical and engineering innovation.

To continue delivering the world-changing science that Diamond leads and enables, Diamond-II is a co-ordinated programme of development that combines a new machine and new beamlines with a comprehensive series of upgrades to optics, detectors, sample environments, sample delivery capabilities and computing. The user experience will be further enhanced through access to integrated and correlative methods as well as broad application of automation in both instrumentation and analysis. Diamond-II will be transformative in both spatial resolution and throughput and will offer users streamlined access to enhanced instruments for life and physical sciences.

Read more on the Diamond website

Image: Diamond’s synchrotron building

Credit: Diamond Light Source

A new way of controlling skyrmions motion

A group of researchers from France has been able to create and guide skyrmions in magnetic tracks. These nanoscale magnetic textures are promising information carriers with great potential in future data storage and processing devices. Experiments at the CIRCE-PEEM beamline of the ALBA Synchrotron enabled to image how skyrmions move along tracks written with helium ions.

Magnetic skyrmions are local twists of the magnetization, considered as units (bits) in new magnetic data storage devices. They were named after British physicist Tony Hilton Royle Skyrme, who described these whirling configurations in the 80’s. But it was not until 2006 that there was evidence of their existence.

Skyrmions are of great interest for the scientific and industrial community as they could help finding more efficient ways to store and process information in our computers. They can be manipulated with lower electrical currents, opening a path for being used as information carriers.

But skyrmions are difficult to control. They do not move in straight lines when current is injected but naturally drift sideways, “killing” themselves. This is known as the Skyrmion Hall effect. In order to be used in devices, they need to be moved and controlled in a reliable way.

A group of researchers led by Olivier Boulle from SPINTEC (Grenoble, France) has a wide experience on the subject. They already reported in 2016 the first observation of magnetic skyrmions under conditions appropriate to the industrial needs, with experiments done at the ALBA Synchrotron.

Now, they have found a way to create and guide skyrmions in racetracks: by irradiating magnetic ultrathin layers with helium ions. This method enables to locally tune the magnetic properties to the desired point without introducing defects in the layer.

The samples were prepared and its magnetic properties were locally modified by helium ions irradiation to create the tracks. Later, they were characterized with different techniques to ensure the preparation was consistent. At the CIRCE beamline of the ALBA Synchrotron, using the PEEM photoemission electron microscope, they were able to image how skyrmions move along the tracks when receiving current pulses. Results were confirmed with magnetic force microscopy and micromagnetic simulations.

Read more on the ALBA website

Image: Micromagnetic simulation showing skyrmion motion along the irradiated racetrack. The irradiated racetrack confines the skyrmions within and they move with nanosecond (ns) current pulses along the track edge without being annihilated, thereby deminishing the Skyrmion Hall Effect (SkHE) (current densities in the parentheses are in A.m-2).

Retrovirus research using Cryo-EM

Reverse transcription involves the conversion of single-stranded RNA to double-stranded DNA. This is a key step in the replication of retroviruses, catalyzed by the enzyme reverse transcriptase. Retroviruses are divided into two subfamilies, one of which, Spumaretrovirinae, has a different proliferation cycle and a different reverse transcriptase domain structure. The presented studies provide the first structural description of the nucleic acid binding by viral reverse transferase, demonstrating its ability to change the oligomeric state depending on the type of bound nucleic acid.

Reverse transcriptases (RTs) use their DNA polymerase and RNase H activities to catalyze the conversion of single-stranded RNA to double-stranded DNA, a crucial process for the replication of retroviruses. Foamy viruses (FV) possess a unique RT which is a fusion with the protease (PR) domain. The mechanism of substrate binding by this enzyme has been unknown. The authors report a crystal structure of monomeric full-length marmoset FV (MFV) PR-RT in complex with an RNA/DNA hybrid substrate. Moreover, the describtion of a structure of MFV PR-RT with RNase H deletion in complex with a dsDNA substrate in which the enzyme forms an asymmetric homodimer has been presented. Cryo-electron microscopy reconstruction of full-length MFV PR-RT – dsDNA complex confirmed the dimeric architecture. These findings represent the first structural description of nucleic acid binding by a foamy viral RT and demonstrate its ability to change its oligomeric state depending on the type of bound nucleic acid. 

Read more on the SOLARIS website

Image: Model of FV

Researchers discover the origin of calcium in human bones

A study from several Italian institutions and the ALBA Synchrotron suggest crystalline calcium carbonate as a precursor of hydroxyapatite in the process of bone formation. Since hydroxyapatite is a mineral constituting 70% of the mass of bone, these findings may have potential applications in the development of new therapeutic approaches in bone cancer. Thanks to the MISTRAL beamline at ALBA, researchers were able to create a 3D tomogram of human cells and visualize calcium depositions inside them.

Stem cells are “non-specialized” cells that can differentiate (transform) into a specific type of cell with a specific function. To become bone cells, stem cells need to “learn” how to take calcium to form the bones. This is related to biomineralization, a process by which living organisms produce minerals, often to harden or stiffen existing tissues. Calcium is known to be found in bones in the form of hydroxyapatite, which is a naturally occurring mineral form of calcium apatite and represents approximately 70% of the mass of bones.

In human cells, biomineralization culminates with the formation of hydroxyapatite, but the mechanism that explains the origination inside the cell and the propagation of the mineral in the extracellular matrix remains largely unexplained, and its characterization is highly controversial, especially in humans.

An interdisciplinary research team, formed by several Italian institutions and the ALBA Synchrotron, used synchrotron-based techniques to characterize the contents of calcium depositions in human stem cells induced to differentiate towards bone cells (osteoblasts). They compared the results for cells at 4 and 10 days after the osteoblastic induction.

Rad more on the ALBA website

Image: Model of early phases of biomineralization showing the localization and composition evolution of Ca compounds during the early phases of osteogenic differentiation. The figure reports also the spectra of Calcite and hydroxyapatite.

In situ spectroscopy as a probe of electrocatalyst performance

Hydrogen fuel cells generally require expensive and scarce platinum catalysts in order to function. Researchers have created highly reactive platinum-nickel nanowires with the potential to reduce the amount of platinum required in fuel cells. Research at PIPOXS examines the atomic-level mechanisms of this catalyst, forming a foundation for the development and commercialization of more efficient fuel cell technology.

What is the new discovery?


The oxygen reduction reaction (ORR) is an important and often limiting component of hydrogen fuel cell operation.  To facilitate this reaction, platinum-based catalysts are often used to increase its rate, though the expense and limited availability of Pt present challenges to its widespread use.  In this work, researchers selectively replaced a portion of the nickel atoms of nickel nanowires with platinum to create platinum-nickel nanowires (PtNi-NWs) as high surface area catalysts that reduced the total amount of platinum required.  These PtNi-NWs were found to be highly active, and so operando x-ray absorption spectroscopy and extended x-ray absorption fine structure (EXAFS) experiments were conducted at the PIPOXS beamline to assess the electronic and geometric changes occurring in these catalysts during their use.   These data enabled the researchers to determine that the Pt formed an alloy with the Ni in the NW and that its interaction with oxygen remained constant regardless of the external potential applied.  

Read more on the CHESS website

Image: Schematic showing the electrochemical cell used for the operando measurements, and how the EXAFS data can be used to deduce the chemistry happening during this reaction.

Insights into coronavirus proteins using SAXS

A collaboration led by researchers from the European Molecular Biology Laboratory (EMBL) used small angle X-ray scattering (SAXS) at the European XFEL and obtained interesting data on samples containing coronavirus spike proteins including proteins of the isolated receptor biding domain. The results can, for example, help investigate how antibodies bind to the virus. This gives researchers a new tool that may improve understanding of our bodies’ immune response to coronavirus and help to develop medical strategies to overcome COVID-19

SAXS is a powerful technique as it allows researchers to gain insights into protein shape and function at the micro- and nanoscales. The technique has proven to be extremely useful in investigating macromolecular structures such as proteins, especially because it removes the need to crystallize these samples. This means researchers can study the sample in its native form under physiological conditions under which biological reactions occur.

Read more on the European XFEL website

Image: Seen here, the instrument SPB/SFX, where the SAXS experiment was carried out. Using this instrument researchers can study the three-dimensional structures of biological objects. Examples are biological molecules including crystals of macromolecules and macromolecular complexes as well as viruses, organelles, and cells.

Credit: European XFEL / Jan Hosan

New fossil sheds light on the evolution of how dinosaurs breathed

An international team of scientists has used high-powered X-rays at the European Synchrotron to show how an extinct South African 200-million-year-old dinosaur, Heterodontosaurus tucki, breathed. The study, published in eLife, demonstrates that not all dinosaurs breathed in the same way.

In 2016, scientists from the Evolutionary Studies Institute at the University of the Witwatersrand in Johannesburg, South Africa, came to the ESRF, the European Synchrotron in Grenoble, France, the brightest synchrotron light source, for an exceptional study: to scan the complete skeleton of a small, 200-million-year-old plant-eating dinosaur. The dinosaur specimen is the most complete fossil ever discovered of a species known as Heterodontosaurus tucki. The fossil was found in 2009 in the Eastern Cape of South Africa by study co-author, Billy de Klerk of the Albany Museum, Makhanda, South Africa. “A farmer friend of mine called my attention to the specimen”, says de Klerk, “and when I saw it I immediately knew we had something special on our hands.”

Fast forward some years: the team of scientists use scans and new algorithms developed by ESRF scientists to virtually reconstruct the skeleton of Heterodontosaurus in unprecedented detail, and thus show how this extinct dinosaur breathed. “This specimen represents a turning point in understanding how dinosaurs evolved” explains Viktor Radermacher, corresponding author, a South African PhD student and now at the University of Minnesota, US.

Read more on the ESRF website

Image: The skull of the Heterodontosaurus tucki dinosaur.

Credit: ESRF

Critical data of insect specimens to be unlocked through 3D imaging

The Natural History Museum is collaborating with Diamond Light Source, the UK’s national synchrotron science facility, on an ambitious project to generate and share immense data from the Museum’s vast insect collections to help further research into their evolution, diversity and extinctions. The Natural History Museum is collaborating with Diamond Light Source, the UK’s national synchrotron science facility, on an ambitious project to generate and share immense data from the Museum’s vast insect collections to help further research into their evolution, diversity and extinctions.

Over 1.6 million of the Museum’s 35 million insects have already been digitised using 2D photography. These specimens have had their images and collections data (information about where in time and space they were collected and what species they are) made available to the public via the Museum’s Data Portal. However, this landmark project is expected to provide valuable new insights and information by providing the beginnings of a high-resolution 3D dataset for all living and fossil insects and their close relatives.

Read more on the Diamond website

Image: Hairy Fungus Beetle – Prepared by Malte Storm

Credit: Diamond Light Source Ltd

Analysing asteroid Ryugu samples

The asteroid Ryugu samples brought back by JAXA’s asteroid explorer “Hayabusa2” in December 2020 are analyzed by six initial analysis teams for one year from June 2021. Among the initial analysis teams, the “Stone Material Analysis Team” and the “Organic Macromolecule Analysis Team” conducts their analysis at the Photon Factory, KEK.

It is thought that asteroids such as Ryugu may have brought water and organic matter to the Earth in the past. By integrating the results of each team’s analysis, we will be closer to solving the great mystery of how life came to be on the Earth.

Read more on the HAYABUSA2-IMSS website

Image : Primordial solar system.