Site icon Lightsources.org

Direct X-ray and electron-beam lithography of halogenated zeolitic imidazolate framework

Metal-organic frameworks (MOFs) offer disruptive potential in micro- and optoelectronics because of their chemical versatility and high porosity. For instance, the low dielectric constant (low-k) resulting from their porosity makes MOFs competitive candidates for high-performance insulators in future microchips. Both the MOF and microelectronics communities have been striving towards integrating MOFs in microchips, which requires two key engineering steps: thin film deposition and lithographic patterning. However, conventional lithography techniques use a sacrificial layer, so-called photoresist, to transfer a pattern into the desired material. The use of photoresist complicates the process, and might induce contamination of the highly porous MOF films. 


A group of researchers from KU Leuven (Belgium) coordinated by Rob Ameloot has used the deep X-ray lithography (DXRL) beamline at Elettra to demonstrate that MOFs can be patterned by X-ray lithography without the use of resist layer. The method is based on selective X-ray exposure of the MOF film, which induces chemical changes that enable its removal by a common solvent. This process completely avoids the resist layer, thus significantly simplifying patterning while maintaining the physicochemical properties of patterned MOFs intact. 

Read more on the Elettra website

Exit mobile version