Determination of interatomic coupling between two-dimensional crystals –

using angle-resolved photoemission spectroscopy. Following the isolation of graphene, many other atomically thin two-dimensional crystals have been produced and can even be stacked on top of each other in a desired order to form so called van der Waals heterostructures.

Subtle changes in the stacking, especially the angle between the crystallographic axes of two adjacent layers, can have big impact on the properties of the whole heterostructure. We use angle-resolved photoemission spectroscopy measurements carried out at the Spectromicroscopy beamline at Elettra to obtain interatomic coupling for carbon atoms by studying a three-layer stack of graphene. The coupling between atoms in two two-dimensional crystals, knowledge of which is necessary to describe the properties of the stack, can be determined by studying a structure made of three layers with two similar interfaces but one with crystallographic axes aligned and one twisted. This is because each of the interfaces provides complementary information and together they enable self-consistent determination of the coupling.

Read more on the Elettra website

Image: Angle resolved photoemission spectrum revealing the electronic bands of a microscopic three layer device having aligned and twisted graphene-graphene interfaces. Measurable band gaps are used to self-consistently determine fundamental parameters of interatomic coupling.

Terahertz tuning of Dirac plasmons in Bi2Se3 Topological Insulator

Light can be strongly confined in subwavelength spatial regions through the interaction with plasmons, the collective electronic modes appearing in metals and semiconductors. This confinement, which is particularly important in the terahertz spectral region, amplifies light-matter interaction and provides a powerful mechanism for efficiently generating nonlinear optical phenomena. These effects are particularly relevant in graphene and topological insulators, where massless Dirac fermions show a naturally nonlinear optical behaviour in the terahertz range. We have shown that the Dirac plasmon resonance in Bi2Se3 topological insulators can be tuned over one octave by employing intense broadband terahertz radiation delivered by the TeraFERMI beamline at FERMI@Elettra. This paves the way towards tunable terahertz nonlinear devices based on topological insulators, with potential applications in opto-electronics, communication, and sensing technologies.

>Read more on the Elettra website

Image: Plasmons are collective oscillations of electrons that can be directly excited by electromagnetic radiation in the presence of an extra momentum (red arrow). This is achieved in the present experiment, through ribbon arrays fabricated onto the surface of topological insulator Bi2Se3 films, excited after illumination with sub-ps, half-cycle THz pulses produced at the FERMI free-electron laser.

Synthesis of mesoscale ordered 2D π-conjugated polymers with semiconducting properties

Two-dimensional materials can exhibit intriguing electronic properties that stem from their geometry. The best-known example is graphene’s Dirac cone that gives rise to massless electrons, which originates from the all-carbon hexagonal lattice. Two-dimensional conjugated polymers (2DCPs) can be considered as analogues of graphene, yet offering greater potential to design geometry and properties by carefully selecting their building blocks. Strikingly, 2DCPs on a kagome lattice (i.e. a trihexagonal tiling) can show both Dirac cones and flat bands, with highly-massive charge carriers.

Despite experimental efforts spanning more than a decade, the poor crystallinity of the synthesized polymers made the study of the electronic properties of 2DCPs a scientific niche reserved to theorists. A collaboration between the “Istituto di Struttura della Materia” of the Italian CNR three Canadian universities (INRS, McGill and Lakehead) realized the milestone of the synthesis of a long-range ordered 2D polymeric network, enabling the measurement of their Dirac cone and flat band features by angle-resolved photoelectron spectroscopy (ARPES). This achievement paves the way to study the intriguing electronic properties of this new class of materials, which make them promising for applications in future electronic and optoelectronic technologies.

Read more on the Elettra website

Image :  a) Scanning tunneling microscope image of a highly-ordered polymeric network with the theoretical model superimposed b) second derivative of the ARPES map for the polymer on Au(111) along the ΓKM direction, where it is possible to observe the Dirac cone feature converging at a Dirac point (DP) around 0.55 eV; the theoretical calculated band structure is superimposed.

Titanium-based potassium-ion battery positive electrode

Small energy storage devices (like the ones used in cell phones, tablets, and laptops) based on the mature Lithium-ion technology have become a key element of our daily life. Facing the pressing challenges posed by Global Warming, the increasing demand of storage systems for the large-scale automotive industry will soon clash with the sparse provision of lithium in the Earth’s crust.
In this panorama, the development of economically feasible emerging battery technologies based on alternative, earth-abundant, elements, is thus highly desirable.
Potassium-ion batteries could represent a viable substitute to Lithium-ion technology in a large-scale green economy. However, the key problem preventing the success of the K-ion technology is linked to the low efficiency of cathode materials. 

>Read more on the Elettra website

Image: Structural evolution of KTiPO4F. (a) Initial crystal structure (b) In operando SXPD: phase transformations. (c) Corresponding charge-discharge profile

Covalent Organic Framework (COF‐1) under pressure

Covalent Organic Frameworks (COF’s) form a family of polymeric materials composed only by light elements. The absence of metal atoms in their structure makes COF’s distinctly different compared to their relatives, Metal Organic Framework materials (MOF’s). Historically first COF structure (named COF-1) was reported back in 2005 by Cote et al., (Science 310 (2015) 1166).  It consists of benzene rings linked by B3Ointo hexagon-shaped 2D sheets which are stacked into a layered structure, resembling in this respect the structure of graphite composed by graphene layers. By analogy with graphene the single layer of COF material could be named as COFene since it represents a true 2D material composed by carbon, hydrogen, boron and oxygen. Unlike graphite, COF-1 is porous material with relatively high surface area which makes it promising for various applications, e.g. for energy storage devices, as a sorbents for gas storage or for membranes.  However, little was known about mechanical properties of COF’s or single layered COFenes except for few theoretical estimations. Unlike graphite or MOF’s, no high pressure studies were available for COFs. The study by A. Talyzin group from Umeå University (Sweden) performed at Elettra at the Xpress beamline and SOLEIL synchrotrons in collaboration with the Technical University of Dresden (Germany) and the Chalmers University (Sweden) is first to evaluate compressibility and pressure limits for stability of COF-1 structure.

>Read more on the Elettra website

Picture: schematics of the high pressure experiments involving diamond anvil cell

Translucency of graphene to van der Waals forces

If in the infinitely large it is the gravitational force that determines the evolution in space and time of planets, stars and galaxies, when we focus our observation on the atomic scale other are the forces that allow materials to exist. These are forces that, like a “special glue”, allow atoms and molecules to aggregate to form living and non-living systems. Among them we find one that, although discovered 150 years ago by Johannes Diderik van der Waals (vdW), still carries with it some aspects of ambiguity. Van der Waals was the first to reveal its origin and to give a first and simple analytical description, even though it took more than a century, with the new discoveries of quantum field theory, to be able to fully understand its quantum character and its relation to the vacuum energy and Casimir force. And only in the last 30 years it has been realized how much this force pervades the natural world. One of the wonders is represented by the geckos, who use these forces to climb vertical and smooth walls thanks to the vdW forces, which are enhanced because of the multitude of hairs present in each finger of their legs. These forces are also known to affect the stability of the double helix of the DNA and are also responsible for the interactions between different groups of amino acids.
What makes the vdW force unique is the fact that it is the weakest of the inter-atomic and inter-molecular forces present in nature and therefore it remains extremely difficult to measure with great accuracy. At the same time, even the inclusion of these force in the most accurate methods of calculation has not yet found a universal solution and the different approaches used by theoretical physicists and chemists to take them into account can sometimes lead to conflicting results.

>Read more on the Elettra website

Image:   CO desorption from Gr/Ir(111). (a) Selected spectra of the uptake corresponding to θCO=0.08 ML (bottom) and 0.30 ML (top). (b) TP-XPS C 1s core level spectra showing its evolution during thermal desorption of CO from Gr/Ir(111). (c) Comparison of CO coverage evolution as a function of temperature for selected CO initial coverages. 

Visualizing electrostatic gating effects in two-dimensional heterostructures

Electronic and optoelectronic devices utilise electric fields to manipulate material properties, controlling band structures and band alignments across heterostructures that combine metals, semiconductors and insulators. With two-dimensional materials, 2D heterostructures (2DHS) can be fabricated with atomic precision by simply stacking layers. In these, applied out-of-plane electric fields are a powerful tool that can be used to degenerately dope semiconductors, modify electronic structure through the Stark effect, and alter band-alignments between layers. As a result, out-of-plane electric fields have been used to engineer functional architectures such as high-efficiency light-emitting diodes and tunnelling transistors, and to probe many-body phenomena.
Despite the fundamental importance of electric-field control over band structure, direct experimental measurements are challenging and have been limited. Whilst gate electrodes are routinely applied for electrical transport investigations, and many studies have reported electric-field dependent light-emission from 2DHS, these depend upon but do not directly reveal the single-particle electronic structure. Angle resolved photoemission spectroscopy (ARPES) has proven to be a powerful tool for probing the momentum-resolved valence band structure of 2D materials such as graphene and semiconducting transition metal dichalcogenides (MX2). But it is challenging to apply conventional ARPES, which typically averages over lengthscales > 100 µm, to 2DHS which are usually only a few µm across. Using the high spatial resolution and flux of the Spectromicroscopy beamline at Elettra, we have shown that submicrometre spatially resolved ARPES (µARPES) can determine band parameters and band alignments across 2DHS of mechanically exfoliated flakes. These heterostructures are similar to those used for optical spectroscopy and transport measurements, opening the way to study operating devices.

>Read more on the Elettra website

Illustration: Direct momentum-resolved electronic structure measurements of in-operando microelectronic devices.

Unravelling the growth mechanism of the coprecipitation of iron oxide nanoparticles

Applications involving iron oxide nanoparticles (IONPs) and nanomaterials in general, are expected to provide solutions to many problems in the fields of healthcare, energy and environment. Magnetic nanoparticles (such as IONPs) have been in the exploratory stage for cancer diagnostic (e.g.in the form of magnetic resonance imaging contrast agents) for more than three decades and treatment (e.g.via hypothermia) in the recent decade. However, success stories are rare, partly due to the limited performance of commercially available nanoparticles, related to the particle quality attributes such as size and shape, polydispersity, crystallinity and surface chemistry. Although today’s literature provides many reports on the synthesis of highly complex nanoparticles with superior properties respect the currently approved products, there seems to be a gap to the application of these materials to fully exploit their enhanced capabilities. This is due, at least partly, to obstacles such as low yield and, most importantly, the robustness and reproducibility of the synthesis method. Hence, detailed studies on nanoparticle formation mechanisms are essential to guarantee that successful syntheses are not a “one-off” but can be performed and reproduced at various research institutions at small to large scales. This work presents such a detailed study, unravelling the growth mechanism of the co-precipitation of IONPs in solution with the aid of synchrotron X-Ray diffraction.

>Read more on the Elettra website

Image: TEM images of the nanoparticles formed after 30 s, 1, 2, 3, 4, 5, 7 and 10 min of reaction.

Surface instability and chemical reactivity of ZrSiS and ZrSiSe nodal-line semimetals

Among topological semimetals, in nodal-line semimetals (NLSM) conduction and valence bands cross each other. In particular, in NLSM, topological constraints protect band crossings and, moreover, band touching forms nodal lines or rings. Recently, topological nodal lines have been observed in bulk ZrSiX compounds (X = S, Se, Te). In ZrSiX, a tetragonal structure is formed by the stacking of X-ZrSi-Zr-X slabs covalently bonded between each other, whose strength decreases by replacing S with Se or Te ions. This class of materials exhibits large and non-saturating magnetoresistance and ultrahigh mobility of charge carriers.
The control over surface phenomena, including oxidation, degradation, and surface reconstruction is a crucial step in order to evaluate the feasibility of the exploitation in technology of ZrSiX.
By means of X-ray photoelectron spectroscopy (XPS) carried out at the APE-HE beamline, high-resolution electron energy loss (HREELS) and density functional theory, an international team of researchers from Italy, China, Russia, Taiwan, and USA (coordinated by University of L’Aquila) has studied the evolution of ZrSiS and ZrSiSe surfaces in oxygen and ambient atmosphere.
The chemical activity of ZrSiX compounds is mainly determined by the interactions of Si layer with ZrX sublayer. Any adsorption provides distortion of the Si layer (flat in bulk). In the case of ZrSiS, the ZrS sublayer is almost the same as in bulk and therefore adsorption is unfavorable because it provides distortions of Si layer. In the case of ZrSiSe, the ZrSe sublayer is already strongly distorted (structure different from bulk), and, therefore, further distortion of Si layer by adsorption is favorable (see figure).

>Read more on the Elettra website

Image: Atomic structure of different steps of the process of the oxidation of ZrSiSe from (a-d) Zr-sites and (e-h) Si-sites. Red, light blue, black and yellow balls represent O, Zr, Se, and Si atoms, respectively. On panels (a) and (e) physical adsorption of single oxygen molecule is depicted. Panels (b) and (f) represent the situation of uniform coverage of the surfaces by molecular oxygen. In panels (c) and (g), decomposition of single oxygen molecule on the surfaces is represented. Panels (d) and (h) show total oxidation of the surfaces.

In-gap states and band-like transport in memristive devices

The creation of point defects in matter can profoundly affect the physical and chemical properties of materials. If appropriately controlled, these modifications can be exploited in applications promising advanced and novel functionalities. Redox-based memristive devices – one of the most attractive emerging memory technologies – provide one of the most striking examples for the potential exploitation of defects. Applying an external electric field to an initially insulating oxide layer is known to induce a non-volatile, voltage-history dependent switching between a low resistance state and a high resistance state, also named memristive device. This switching occurs through the creation and annihilation of the so-called conductive filaments, which are generated at the nanoscale by assembly of donor-type point defects such as oxygen vacancies.
To date, the exact relationship between concentration and nanoscale distribution of defects within the filament on the one hand and the electronic transport properties of the devices on the other hand is still elusive. Due to limitations in sensitivity or spatial resolution of most characterization methods, the electronic structure of conductive filaments has not yet been characterized in detail. However, this knowledge is crucially needed as input for the development of electronic transport models with high predictive power.

>Read more on the Elettra website

Image: (a) Ti3+ map based on the Ti 3p3/2 spectrum. (b) Ti 2p 3/2 spectra for the filament and the surrounding. (c) Spatial map of the in-gap state distribution. (d) Valence band spectrum extracted from the filament at a photon energy of 463.3 eV with a fit of the valence band maximum and the in-gap states (red lines). (e) Band diagram of the device calculated based on the position of the in-gap states. The blue line shows the conduction band and the dashed green lines shows position of the defect states obtained by PEEM in respect to the conduction band 

2 for the price of 1: how double ionization becomes an efficient process

Double ionization is a unique mechanism where two electrons are simultaneously emitted from an atom or molecule. Typically, it’s a very weak process occurring only a few percent of the time compared to single ionization where only one electron is emitted. This is due to double ionization requiring the correlated action of two electrons hit by an energetic photon or particle. However, in a recent experiment, is has been shown that double ionization doesn’t necessarily need to be a minor effect and can even be the primary ionization mechanism.
The enhancement is likely due to double ionization proceeding through a new type of energy transfer process termed double intermolecular Coulombic decay, or dICD, for short. To experimentally observe this mechanism, dimers consisting of two alkali metal atoms were attached to the surface of helium nanodroplets. The dICD process, schematically shown in Fig. 1, occurs through an electronically excited helium atom (red), produced by synchrotron radiation, interacting with the neighboring alkali dimer (blue and white) resulting in energy transfer and double ionization. To distinguish dICD from other processes, the kinetic energies of the emitted electrons were measured in coincidence with their alkali ion counterparts.

>Read more on the Elettra website

Image: schematic view of double Intermolecular Coulombic decay (dICd).

Magnetic patterning by electron beam assisted carbon lithography

The exploitation of the unique physical properties of thin films and heterostructures are opening intriguing opportunities for magnetic storage technology. These artificial materials will in fact enable novel architectures for a multitude of magnetic devices and sensors, promoting a significant improvement in storage density, functionality and efficiency. Their usage will also contribute to diminish the consumption of materials that are rare and difficult to extract, being often detrimental to the environment. With these objectives in mind, researchers are now looking with great attention at the combination of thin ferromagnetic layers with 2-dimensional crystals like graphene and transition metal dichalcogenides. Due to their layered structure, these systems exhibit very favorable magnetic properties, which can be tuned through thickness and interfacial interactions. For instance, graphene-cobalt stacks display an enhanced perpendicular magnetic anisotropy, a feature that is especially important for non-volatile memories.
The fabrication of layered materials, however, is still a very challenging process. Not only it requires atomic precision in the deposition of the various layers but also the ability to create nano or microstructures of arbitrary shape. Conventional lithography in conjunction with chemical etching permits nowadays to sculpture the matter with great accuracy, at lateral resolution close to the nanometer. Yet, this approach poses an important limitation, that is, the material can only be shaped by erosion. The ability to vary the chemical composition, by adding atoms for example, is instead very desirable for many applications. To date, this can be done by stimulating the fragmentation of suitable carrier molecules using photons or electrons. So far, various methods based on focused beam induced processing methods have been devised, which can be readily employed to deposit carbonaceous layers and metallic nanostructures. These methods, however, cannot be applied when ultra-clean, ultra-high vacuum (UHV) conditions are needed, as happens for the case of semiconductor industry.

>Read more on the Elettra website

Figure 1.  (left) Scheme of the protocol for printing chemo-magnetic patterns in ultrathin Co on Re(0001). (a) The film is exposed to CO at room temperature. The irradiation with a focused electron beam (yellow) stimulates the dissociation of the molecule, which results in the accumulation of atomic carbon on the surface. (b) Subsequently, the sample is annealed above 170 °C to desorb molecularly adsorbed CO from the non-irradiated surface regions. (c) LEEM image of an e-beam irradiated disk. Disk diameter: 1 μm; Co thickness: 4 atomic layers; irradiation energy: 50 eV; CO dose: 9.75 L; (d) Intensity profile across the orange line in the LEEM image in (c) and fit using a step function convoluted with a Gaussian of full width at half-maximum of 30 nm. The dashed blue lines indicate the 15–85% distance between minimum and maximum intensity. (e) XMCD-PEEM image of the same region at the Co L3 edge. (f) Intensity profiles across the blue and orange dashed lines in the XMCD-PEEM image in (e). The magnetic stripes indicate out-of-plane magnetic anisotropy. The stripe period is 120 nm. Adapted with permission from [1].
Copyright (2018) American Chemical Society.

Doped epitaxial graphene close to the Lifshitz transition

Graphene, an spbonded sheet of carbon atoms, is still attracting lots of interest almost 15 years after its discovery. Angle-resolved photoemission spectroscopy (ARPES) is a uniquely powerful method to study the electronic structure of graphene and it has been used extensively to study the coupling of electrons to lattice vibrations (phonons) in doped graphene. This electron-phonon coupling (EPC) manifests as a so-called “kink” feature in the electronic band structure probed by ARPES. What is much less explored is the effect of EPC on the phonon structure. A very accurate probe of the phonons in graphene is Raman spectroscopy.
M.G. Hell and colleagues from Germany, Italy, Indonesia, and Japan combined ARPES (carried out at the BaDelPhbeamline – see Figure 1) with low energy electron diffraction (LEED) and Raman spectroscopy (carried out at the University of Cologne in Germany) in a clever way to fully understand the coupled electron-phonon system in alkali metal doped graphene. LEED revealed ordered (1×1), (2×2), and (sqrt3xsqrt3)R30°adsorbate patterns with increasing alkali metal deposition. The ARPES analysis yielded not only the carrier concentration but also the EPC coupling constant. Ultra-High Vacuum (UHV) Raman spectra carried out using identically prepared samples with the very same carrier concentrations provided the EPC induced changes in the phonon frequencies.

>Read more on the Elettra Sincrotrone Trieste website

Image:  Top: ARPES spectra along the Γ-K-M high symmetry direction of the hexagonal Brillouin zone for Cs doped graphene/Ir(111) with increasing Cs deposition. The Dirac energy ED and the observed LEED reconstruction are also indicated. Bottom: Corresponding Fermi surfaces at the indicated charge carrier concentration. 

Ferroelectric control of the spin texture in GeTe

Spin-orbit coupling effects in materials with broken inversion symmetry are responsible for peculiar spin textures, giving rise to intriguing phenomena such as intrinsic spin Hall effect. Among these materials, ferroelectrics allow for non-volatile control of the spin degree of freedom through the electrical inversion of the spin texture, based on their reversible spontaneous polarization. Finding suitable ferroelectric semiconductors would be a fundamental achievement towards the implementation of novel electronic and spintronic devices combining memory and computing functionalities.
Germanium Telluride emerges as promising candidate, since theoretically proposed as the father compound of the new class of ferroelectric Rashba semiconductors. Its ferroelectricity provides a non-volatile state variable able to generate and drive a giant bulk Rashbatype spin splitting of the electronic bands. Its semiconductivity and silicon-compatibility allows for the realization of spin-based non-volatile transistors.
A European team of both experimentalists and theoreticians from Italy (Politecnico di Milano, IFN-CNR, CNR-SPIN, CNR-IOM) and Germany (Paul-Drude-Institut für Festkörperelektronik, Universität Würzburg) has demonstrated the ferroelectric control of the Rashba spin texture in GeTe probed by spin and angular resolved photoemission spectroscopy at the Advanced Photoelectric Effect experiments (APE) beamline and supported by NFFA.

>Read more on the Elettra Sincrotrone Trieste website

Image: (a, a’) PFM ferroelectric hysteresis loops and the pristine polarization states for the as-prepared Te- and Ge-terminated GeTe(111) surfaces, respectively. (b, b’) DFT calculations of the k-resolved spin polarization along two high symmetry crystallographic directions. The main bulk Rashba bands are marked as B1 and B2. The black dashed line indicates the wave vector k of SARPES measurements. (c, c’) Spin-polarized currents and spin asymmetries (Px) versus binding energy at the wave vector k. The peaks correspond to the intersection of the Rashba bands B1 and B2 with the vertical dashed line at k. (d, d’) Constant energy maps for the Te- and Ge-terminated surfaces. Blue and red arrows indicate the sense of circulation of spins, opposite for the two opposite ferroelectric polarizations.

Research on ancient teeth reveals complexity of human evolution

Fossil records enable a detailed reconstruction of our planet’s history and of the evolution of our species. In particular, teeth are a sort of biological archive that record in their structures (enamel, dentine and pulp chamber) the different phases of the human evolution. An international team of researchers led by Clément Zanolli from the Université Toulouse III Paul Sabatier (France) has characterized human dental remains from Fontana Ranuccio (Latium) and Visogliano (Friuli-Venezia Giulia), Italy through a comparative high-resolution endostructural analysis based on microfocus X-ray microtomography (mCT) scanning and detailed morphological analyses. We examined the shape and arrangement of tooth tissues (see Fig. 1) and compared them with teeth of other human species (see Fig. 2).

With an age of around 450,000 years before present, the analysed dental remains from the sites of Fontana Ranuccio, located 50 km south-east of Rome, and Visogliano, located 18 km north-west of Trieste, are part of a very short list of fossil human remains from Middle Pleistocene Europe and are among the oldest human remains on the Italian Peninsula.
From the data obtained through X-ray μ-CT measurements performed at the TomoLab station of Elettra and at the Multidisciplinary Laboratory of the ‘Abdus Salam’ International Centre for Theoretical Physics in Trieste (Italy), we found that the teeth of both sites share similarities with Neanderthals but they are distinct from modern humans. This study adds to an emerging picture of complex human evolution in Middle Pleistocene Eurasia.  The investigated fossil teeth show that Neanderthal dental features had evolved by around 450,000 years ago.

>Read more on the Elettra Sincrotrone Trieste website

Image: Volume rendering of the Fontana Ranuccio (FR1R and FR2) and Visogliano (Vis. 1-Vis. 6) tooth specimens. The enamel is represented in blue while the dentine in yellow. All specimens were imaged by X-ray μCT at the Tomolab station of Elettra and at the Multidisciplinary Laboratory of the ICTP.     
Credit:  doi: 10.1371/journal.pone.0189773

A shape-induced orientation phase within 3D nanocrystal solids

Designing nanocrystal (NC) materials aims at obtaining superlattices that mimic the atomic structure of crystalline solids. In such atomic systems, spatially anisotropic orbitals determine the crystalline lattice type. Similarly, in NC systems the building block anisotropy defines the order of the final solid: here, the NC shape governs the final superlattice structure. Yet, in contrast to atomic systems, NC shape-anisotropy induces not only positional, but also orientational order, ranging from full rotational disorder to a stable, fixed alignment of all NCs. This orientational relation is of special interest, as it determines to what extent atomically coherent connections between NCs are possible, thereby enabling complete wave function delocalization within the NC solid.
In addition to predicting the final NC orientation and position structure, the realization of NC materials demands a controllable fabrication process such that the designed order can be produced. Generally, such highly ordered NC superstructures are achieved through solvent evaporation induced self‐assembly on hard substrates. For applications where the 2D nature of this substrates process is limiting, nonsolvent into solvent diffusion, a technique commonly used to grow single crystals of dissolved molecules, is an attractive option. However, the precise influence of self-assembly parameters on the final superlattice outcome remains unknown. In this work, the researchers posed two closely related questions regarding the design of novel free-standing NC materials: (i) how can the NC self-assembly process be controlled to yield highly ordered free-standing supercrystals and (ii) what is the detailed positional and orientational order within the NC solid? A multidisciplinary team of collaborators, including the Austrian Small Angle X-ray Scattering (SAXS) beamline at Elettra, approached this challenge by a combined experimental and computational strategy.

>Read more on the Elettra Sincrotrone Trieste website

Image: Self‐assembly of 3D colloidal supercrystals built from faceted 20 nm Bi nanocrystals is studied by mens of in-situ synchrotron X‐ray scattering, combined with Monte Carlo simulations.