Diamond celebrates 10,000th paper – A breakthrough in chiral polymer thin films research

This could fundamentally change the technology landscape by enabling a new generation of devices

A recent paper in Nature Communications by an international team of collaborative researchers marks the 10,000th published as a result of innovative research at Diamond Light Source, the UK’s national synchrotron. This study presents disruptive insights into chiral polymer films, which emit and absorb circularly polarised light, and offers the promise of achieving important technological advances, including high-performance displays, 3D imaging and quantum computing.https://player.vimeo.com/video/502596383

Chirality is a fundamental symmetry property of the universe. We see left-handed (LH) and right-handed (RH) mirror image pairs in everything from snails and small molecules to giant spiral galaxies. Light can also have chirality. As light is travelling, its internal electric field can rotate left or right creating LH or RH circular polarisation. The ability to control and manipulate this chiral, circularly-polarised light presents opportunities in next-generation optoelectronics (Figs 1a and 1b). However, the origin of the large chiroptical effects in polymer thin films (Figs 1c and 2) has remained elusive for almost three decades. In this study, a group of researchers from Imperial College London, the University of Nottingham, the University of Barcelona, the Diamond Light Source and the J.A. Woollam Company made use of Diamond’s Synchrotron Radiation Circular Dichroism beamline (B23) and the Advanced Light Source in California.

Read more on the Diamond website

Image: In situ chiroptical response of ACPCA and cholesteric chiral sidechain polymers (CSCP) thin films. In situ CD spectra recorded during heating and cooling of ACPCA (F8BT: aza[6]H) and CSCP (cPFBT) thin films (note blue represents low temperatures and red represents high temperatures), (c) and (d) the CD intensity recorded at 480nm as a function of temperature during heating (red) and cooling (blue), and (e) and (f) CD intensity of thin films held at 140°C as a function of time for [P] (turquoise) and [M] (purple) systems (note the different time on-axis).

Scientists streamline process for controlling spin dynamics

Marking a major achievement in the field of spintronics, researchers at the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory and Yale University have demonstrated the ability to control spin dynamics in magnetic materials by altering their thickness. The study, published on the 18th January in Nature Materials, could lead to smaller, more energy-efficient electronic devices.

“Instead of searching for different materials that share the right frequencies, we can now alter the thickness of a single material—iron, in this case—to find a magnetic medium that will enable the transfer of information across a device,” said Brookhaven physicist and principal investigator Valentina Bisogni.

Read more on the BNL website

Image: An artist’s interpretation of measuring the evolution of material properties as a function of thickness using resonant inelastic x-ray scattering.

Science Begins at Brookhaven Lab’s New Cryo-EM Research Facility

Brookhaven Lab’s Laboratory for BioMolecular Structure is now open for experiments with visiting researchers using two NY State-funded cryo-electron microscopes.

UPTON, NY—On January 8, 2021, the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory welcomed the first virtually visiting researchers to the Laboratory for BioMolecular Structure (LBMS), a new cryo-electron microscopy facility. DOE’s Office of Science funds operations at this new national resource, while funding for the initial construction and instrument costs was provided by NY State. This state-of-the-art research center for life sciences imaging offers researchers access to advanced cryo-electron microscopes (cryo-EM) for studying complex proteins as well as the architecture of cells and tissues.

Many modern advances in biology, medicine, and biotechnology were made possible by researchers learning how biological structures such as proteins, tissues, and cells interact with each other. But to truly reveal their function as well as the role they play in diseases, scientists need to visualize these structures at the atomic level. By creating high-resolution images of biological structure using cryo-EMs, researchers can accelerate advances in many fields including drug discovery, biofuel development, and medical treatments.

Read more on the BNL website

Image: Brookhaven Lab Scientist Guobin Hu loaded the samples sent from researchers at Baylor College of Medicine into the new cryo-EM at LBMS.

A 1-Atom-Deep Look at a Water-Splitting Catalyst

X-ray experiments at the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) revealed an unexpected transformation in a single atomic layer of a material that contributed to a doubling in the speed of a chemical reaction – the splitting of water into hydrogen and oxygen gases. This process is a first step in producing hydrogen fuel for applications such as electric vehicles powered by hydrogen fuel cells.

The research team, led by scientists at SLAC National Accelerator Laboratory, performed a unique X-ray technique and related analyses, pioneered at Berkeley Lab’s Advanced Light Source (ALS), to home in on the changes at the surface layer of the material. The ALS produces X-rays and other forms of intense light to carry out simultaneous experiments at dozens of beamlines.

Read more on the LBL website

Image: This illustration shows two possible types of surface layers for a catalyst that performs the water-splitting reaction, the first step in making hydrogen fuel: The gray surface is lanthanum oxide and the colorful surface is nickel oxide. A rearrangement of nickel oxide’s atoms while carrying out the reaction made it twice as efficient. Researchers hope to harness this phenomenon to make better catalysts. Lanthanum atoms are depicted in green, nickel atoms in blue, and oxygen atoms in red.

Credit: CUBE3D

High Frequency-Couplers for bERLinPro prove resilient

In synchrotron light sources, an electron accelerator brings electron bunches to almost the speed of light so that they can emit the special “synchrotron light”. The electron bunches get their enormous energy and their special shape from a standing electromagnetic alternating field in so-called cavities. With high electron currents, as required in the bERLinPro project, the power needed for the stable excitation of this high-frequency alternating field is enormous. The coupling of this high power is achieved with special antennas, so-called couplers, and is considered a great scientific and technical challenge. Now, a first measurement campaign with optimised couplers at bERLinPro shows that the goal can be achieved.

Read more on the HZB website

Image: For the measurement campaign, two couplers were mounted in a horizontal test position under a local clean room tent.

Credit: © A. Neumann/HZB

Scientist from the SOLARIS team awarded with the prestigious ERC Grant

Dr Sebastian Glatt the member of SOLARIS Team and the researcher from Małopolska Centre of Biotechnology (MCB) of the Jagiellonian University has received the ERC Consolidator Grant worth almost 2 million euro. His research will contribute to the better understanding of molecular mechanisms behind the fundamental processes of high clinical relevance, which shape and control the functioning of cellular protein in all living organisms.

Since 2008, the European Research Council (ERC) has been awarding grants for ground-breaking research conducted in the European Union member states and associated countries. The ERC consolidator grant has been addressed to experienced and  deserved researchers. The recently published list of this year’s Consolidator Grant winners comprises 327 researchers from 23 European countries, who will receive 655 million euro in total. Three of the winning projects will be carried out at Polish universities: the AGH University of Science and Technology in Kraków, the University of Warsaw and the Jagiellonian University. The last one is represented by the project “Deciphering the role of RNA modifications during ribosomal decoding and protein synthesis” by Dr Sebastian Glatt. This is the first grant of the European Research Council in the field of life sciences, which received a researcher from the Jagiellonian University.

Read more on the SOLARIS website

Image: Dr Sebastian Glatt with colleagues in the lab

Credit: SOLARIS

SESAME’s Materials Science beamline starts full user operation

On 17 December 2020, SESAME opened the doors of its Materials Science (MS) beamline to a team from the Royal Scientific Society (RSS) in Jordan, making this instrument, which is dedicated to structural studies with X-ray powder diffraction, the third of the Centre’s beamlines to be fully operational and hosting users.

“We are looking at the first diffraction pattern ever measured for a user sample on the newly-commissioned MS beamline at SESAME. RSS has a place in the history of SESAME”, said HRH Princess Sumaya bint El Hassan, President of the RSS.

The RSS team consists of Kyle Cordova, Executive Director of Scientific Research and Assistant for Research and Development to HRH Princess Sumaya bint El Hassan, and his colleague, the Junior Staff Scientist Ala’a Al-Ghourani. “Our research is focused on discovering new, highly-porous materials for use in mitigating the effects of climate change. Understanding our material’s structure at the atomic level is critical for ensuring that the target application can be met. SESAME’s MS beamline allows us to do this – through X-ray diffraction we can solve the chemical structure in order to improve our material’s end performance” indicated Kyle Cordova, adding “Being the first users is an immense honour. I am proud to be representing Jordan’s largest applied research institution, the Royal Scientific Society, in this historic first!”

Read more on the SESAME website

Image: Ala’a Al-Ghourani and Mahmoud Abdellatief preparing to mount a sample for study in the experimental hutch of the MS beamline.

Credit: Royal Scientific Society

A better understanding of arterial calcification

McGill researchers are one step closer to understanding the origins of arterial calcification, a process that contributes to heart disease.

Minerals form naturally in our bones and teeth, but when minerals like calcium phosphate attach to the soft tissues of our vascular system, they can turn the once flexible arteries into stiff vessels that restrict blood flow––increasing the chance of heart attacks or strokes.

Understanding how and why minerals form in soft tissue is crucial for the health of at-risk Canadians, those living with diabetes and chronic kidney disease, as well as seniors.

Data collected on the SXRMB beamline at the Canadian Light Source (CLS) at the University of Saskatchewan has helped further the understanding about where these calcium deposits start.

Read more on the CLS website

Image: Marta Cerruti (left) and Ophelie Gourgas in a laboratory using a Raman machine.

Credit: Canadian Light Source

Titanium defective sites in TS-1: structural insights by combining spectroscopy and simulation

Titanium Silicalite-1 (TS-1) is a titanium zeolite, whose peculiarity is the presence of Ti atoms isomorphously substituting the Si ones at tetrahedral framework positions. However, real TS-1 samples are characterized by the co-presence of other Ti sites, ranging from extended TiO2phases down to defective Ti sites. The “defective Ti” label covers a broad range of possible Ti moieties, whose structural description is in most of the cases barely qualitative in the literature. In this work, we combined experimental and theoretical approaches, aiming to unravel the exact structure of defective Ti sites. 

Read more on the Elettra website

The ALBA Synchrotron to become a 4th generation facility

The Rector Council of the ALBA Synchrotron, counting with the participation of the Ministry of Science and Innovation and the Department of Business and Knowledge of the Generalitat de Cataluña, chaired by Minister Pedro Duque, has given the green light to start working in 2021 on the ALBA II project, an ambitious program that will transform ALBA into a 4th generation synchrotron facility upgrading the accelerator and other components and building new beamlines.

Nowadays, synchrotron facilities are experiencing an outstanding technological evolution, applying new solutions for the design and construction of accelerators, the development of X-ray detectors and the management of experimental data.

The so-called 4th generation synchrotron facilities, compared to those of the 3rd generation, produce a brighter and more coherent photon beam. When analyzing matter, they provide inaccessible capabilities as of today, in terms of resolution, detection levels and the understanding of chemical and electromagnetic properties. In addition, they offer new technological approaches to solve society’s challenges more efficiently and move towards a sustainable and smart economy in a more efficient health system.

Read more on the ALBA website

Image: ALBA synchrotron

Credit: ALBA

Power boost thanks to gold lamellae

Research team develops new material system to convert and generate terahertz waves

On the electromagnetic spectrum, terahertz light is located between infrared radiation and microwaves. It holds enormous potential for tomorrow’s technologies: Among other things, it might succeed 5G by enabling extremely fast mobile communications connections and wireless networks. The bottleneck in the transition from gigahertz to terahertz frequencies has been caused by insufficiently efficient sources and converters. A German-Spanish research team with the participation of the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) has now developed a material system to generate terahertz pulses much more effectively than before. It is based on graphene, i.e., a super-thin carbon sheet, coated with a metallic lamellar structure. The research group presented its results in the journal ACS Nano (DOI: 10.1021/acsnano.0c08106).

Some time ago, a team of experts working on the HZDR accelerator ELBE were able to show that graphene can act as a frequency multiplier: When the two-dimensional carbon is irradiated with light pulses in the low terahertz frequency range, these are converted to higher frequencies. Until now, the problem has been that extremely strong input signals, which in turn could only be produced by a full-scale particle accelerator, were required to generate such terahertz pulses efficiently.“This is obviously impractical for future technical applications,” explains the study’s primary author Jan-Christoph Deinert of the Institute of Radiation Physics at HZDR. “So, we looked for a material system that also works with a much less violent input, i.e., with lower field strengths.”

Read more on the HZDR website

Image: Ultra-thin gold lamellae drastically amplify the incoming terahertz pulses (red) in the underlying graphene layer, enabling efficient frequency multiplication.

Credit: HZDR/Werkstatt X

How a very “sociable” protein can hold clues about Alzheimer’s origin

The origin of the most prevalent form of Alzheimer’s disease, which accounts for 95% of cases, is still not clear despite decades of scientific studies. “Before understanding the pathology, we need to understand the biology”, explains Montse Soler López, scientist leading research on Alzheimer’s disease at the ESRF. “The only thing we are sure about is that the most common form of Alzheimer’s is linked with ageing”, she asserts.

So researchers have been focusing on parts of the body that degrade dramatically with age. Neurons, for example, are long-lived cells, meaning that they don’t renew themselves like other cells do. Neurons lodge mitochondria, which are so-called the “powerhouse of cell” because of their active role generating energy in the body. With time, mitochondria suffer oxidative stress and this leads to their malfunction. It has been recently discovered that people with Alzheimer’s may have an accumulation of amyloids inside mitochondria (previously it was thought amyloids were only outside the neurons). Montse Soler López is trying to find whether there is a link between mitochondrial dysfunction, presence of amyloids and early disease symptoms. “We believe that malfunctioning of the mitochondria can take place 20 years before the person shows symptoms of the disease”.

Read more on the ESRF website

New type of molecular knot discovered

Scientists have developed a way of braiding three molecular strands enabling tighter and more complex knots to be made than has previously been possible. 

The paper, published in Nature Chemistry reports the synthesis of a new type of molecular knot, called an endless knot (or 7-4 knot). This type of knot cannot be made from helices – simply twisting strands together and joining the ends – a technique used to make complex molecular knots before.

A team, from the University of Manchester, employed a 3×3 interwoven molecular grid as an intermediate and key structure – they solved this key structure using single-crystal X-ray diffraction techniques on Diamond’s I19 beamline. The bright synchrotron light on I19 was fundamental to the discovery as without it there would not be proof that the knot strands were woven in the correct way.

Read more on the Diamond website

Image: A new type of molecular knot, called an endless knot (or 7-4 knot).

Credit: David Leigh, University of Manchester.

Preparing for the next generation of batteries

In the ongoing quest to build a better battery, researchers used the Canadian Light Source (CLS) at the University of Saskatchewan to identify the potential of using polymer composites as electrode matrices to increase the capacity of rechargeable lithium-ion (Li-ion) batteries.

“The composition of the adhesive and conductive framework for batteries hasn’t changed in years,” said Dr. Christian Kuss, assistant professor in the Department of Chemistry at the University of Manitoba and one of three researchers on the project. “But, we’re reaching the limit of how much capacity Li-Ion batteries have so this work is essentially preparing for the next generation of batteries.”

Over many cycles of charging and discharging, battery materials begin to break down, he explained. “The goal is to find new matrix materials that allow the electrode to stay intact over longer periods of time and thereby increase capacity.”

The new matrix material Kuss and his colleagues studied was based on a mixture of two polymers – one adhesive and the other conductive. The adhesive polymer is cellulose based, he said, while the conductive one “is easily synthesized and fairly cheap.” Cost is an important consideration “because you ultimately want a battery that is comparable in terms of pricing to what’s already available.”

At the CLS, the researchers used the Spectromicroscopy beamline to study the chemical structure of the polymer mixture. “With this technique, we could see the mixture and see how the polymers were distributed at a microscale.”

Read more on the CLS website

Image: Battery cyclers for running and testing batteries.

Cooking pollution more resilient than previously thought

Following research undertaken at Diamond, particulate emissions from cooking have been discovered to stay in the atmosphere for longer than initially thought, causing a prolonged contribution to poor air quality and human health.

A new study, led by researchers at the University of Birmingham, demonstrated how cooking emissions can survive in the atmosphere over several days, rather than being broken up and dispersed.

The team collaborated with Diamond, the University of Bath and the Central Laser Facility to show how these fatty acid molecules react with molecules found naturally in the earth’s atmosphere. During the reaction process, a coating is formed around the outside of the particle that protects the fatty acid inside from gases such as ozone which would otherwise break up the particles.

This research was made possible by using Diamond’s powerful X-ray beamline (I22). For the first time researchers we able to recreate the reaction process in a way that enables it to be studied in laboratory conditions.

Read more on the Diamond website

Under wraps: X-rays reveal 1,900-year-old mummy’s secrets

Researchers used the powerful X-rays of the Advanced Photon Source to see the preserved remains of an ancient Egyptian girl without disturbing the linen wrappings. The results of those tests point to a new way to study mummified specimens.

The mummified remains of ancient Egyptians hold many secrets, from the condition of the bodies to the artifacts placed within the burial garments. Now a team of researchers has found a way to unwrap those secrets, without unraveling the mummies themselves.

Three years ago, researchers from Northwestern University, in preparation for an exhibit on campus, carefully transported a 1,900-year-old mummy to the Advanced Photon Source (APS), a U.S. Department of Energy (DOE) Office of Science User Facility at DOE’s Argonne National Laboratory. There scientists used powerful X-ray beams to peer inside the layers of linen and resin to examine the 2,000-year-old bones and objects buried within.

Read more on the Argonne National Laboratory website

Image: In 2017, Stuart Stock, center, of Northwestern University, talks with Rachel Sabino, right, of the Art Institute of Chicago while Argonne scientist Ali Mashayekhi, left, makes adjustments to the apparatus holding a 1,900-year-old Egyptian mummy.

Credit: Mark Lopez / Argonne National Laboratory.