Lightsource research on SARS-CoV-2

Coronaviruses are a family which includes the common cold, SARS, MERS and the current outbreak of the disease COVID-19, caused by the SARS-CoV-2 virus.
Several facilities of our collaboration have started research about SARS-CoV-2 virus or launched open calls for rapid access. This post will be updated regularly.

Publications on SARS-CoV-2 Rapid Access


The Canadian Light Source (Canada) has created a specific page highlighting their COVID-19 research: COVID-19 research at the Canadian Light Source

BESSY II at HZB (Germany) has set up a page where it shows their contributions to the research on SARS-CoV-2 , see here

DESY (Germany) has launched a new page dedicated to Corona Research:

Diamond Light Source (UK) has created a specific website “Coronavirus Science” with platforms for various audiences: scientific community, general public and the media:

ELETTRA (Italy) has launched a new page dedicated to COVID-19 research:

The Photon Division of PSI (Switzerland) have collated many information linked to their institute on coronavirus-relevant research (recent publications, rapid access…):

ALBA (Spain) has set up a dedicated area on their website for information related to COVID-19 (rapid access, publications etc):

The ALS (CA/USA) has created a page listing all COVID-19 related research:

Published articles

2021.04 Diamond Light Source (UK), article on their website: First images of cells exposed to COVID-19 vaccine – – Diamond Light Source

2021.04.05 ALS (CA/USA) blog post on Berkeley Lab Biosciences website

2021.04.02 PETRA III at DESY (Germany), article and animation on their website DESY X-ray lightsource identifies promising candidate for COVID drugs

2021.03.26 Diamond Light Source (UK), article and video on their website: New targets for antibodies in the fight against SARS-CoV-2

2021.02.23 Australian Light Source (ANSTO) Australia, article on their website: Progress on understanding what makes COVID-19 more infectious than SARS

2020.12.02 ESRF (France), article and video on their website: ESRF and UCL scientists awarded Chan Zuckerberg Initiative grant for human organ imaging project

2020.11.10 Diamond Light Source (UK), article and video on their website: From nought to sixty in six months… the unmasking of the virus behind COVID-19

2020.10.29 Canadian Light Source (Canada) video on their website: Studying how to damage the COVID-19 virus

2020.10.07 National Synchrotron Light Source II (NSLS-II) at Brookhaven Lab (NY / USA) article on their website: Steady Progress in the Battle Against COVID-19

2020.10.07 Diamond Light Source (UK), article on their website: Structural Biology identifies new information to accelerate structure-based drug design against COVID-19

2020.10.06 MAX IV (Sweden), article on their website: Tackling SARS CoV-2 viral genome replication machinery using X-rays

2020.08.31 SLAC (CA / USA), article also with news about research at Stanford Synchrotron Radiation Lightsource (SSRL): SARS-CoV-2 Spike Protein Targeted for Vaccine

2020.08.27 Diamond Light Source (UK), article on their website: Structural Biology reveals new target to neutralise COVID-19

2020.08.27 Canadian Light Source (Canada) video on their website: Developing more effective drugs

2020.08.25 Australian Synchrotron (ANSTO) (Australia) article on their website: More progress on understanding COVID-19

2020.08.24 DESY (Germany) article on their website: PETRA III provides new insights into COVID-19 lung tissue

2020.08.11 Australian Synchrotron (ANSTO) (Australia) article on their website: Unique immune system of the alpaca being used in COVID-19 research

2020.07.30 Swiss Light Source at PSI (Switzerland) article on their website: COVID-19 research: Anti-viral strategy with double effect

2020.07.29 National Synchrotron Light Source II (NSLS-II) at Brookhaven Lab (NY / USA) article on their website: Ready to join the fight against COVID-19.

2020.07.20 ALBA (Spain) article on their website: A research team from Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC) uses synchrotron light to study the possible effect of an antitumoral drug of clinical use over the viral cycle of SARS-CoV-2 coronavirus. 

2020.07.15 ALS (USA) article on their website: Antibody from SARS Survivor Neutralizes SARS-CoV-2

2020.07.14 Diamond Light Source (UK), article on their website: Engineered llama antibodies neutralise Covid-19 virus

2020.06.17 European XFEL (Germany) article on their website: Pulling Together: A collaborative research approach to study COVID-19

2020.06.15 European XFEL (Germany) article on their website: Open Science COVID19 analysis platform online

2020.06.09 APS at Argonne National Laboratory (USA) article on their website: Novel Coronavirus Research at the Advanced Photon Source

2020.05. Società Italiana di Fisica publishes an article about research done at Elettra Sincrotrone Trieste (Italy) and the Advanced Light Source (CA / USA): Accelerator facilities support COVID-19-related research

2020.05.27 Diamond Light Source (UK), new animation video demonstrating the work that has been done at Diamond’s XChem facilities.

2020.05.19 Advanced Light Source (CA / USA), article about their latest results: X-ray Experiments Zero in on COVID-19 Antibodies

2020.05.15 Swiss Light Source (Switzerland), article about their first MX results: First MX results of the priority COVID-19 call

2020.05.14 MAX VI (Sweden), article about their research: Tackling SARS CoV-2 viral genome replication machinery using X-rays

2020.05.14 CHESS (NY/USA), article: CHESS to restart in June for COVID-19 research

2020.05.14 the LEAPS initiative brings together many of our European members. The initative published this brochure: Research at LEAPS facilities fighting COVID-19

2020.05.12 Diamond Light Source (UK), article about their collaboration in a consortium: UK consortium launches COVID-19 Protein Portal to provide essential reagents for SARS-CoV-2 research

2020.05.11 Advanced Photon Source (IL/USA), article: Studying Elements from the SARS-CoV-2 Virus at the Bio-CAT Beamline

2020.05.07 European XFEL (Germany), article: European XFEL open for COVID-19 related research

2020.05.06 ESRF (France), article: World X-ray science facilities are contributing to overcoming COVID-19

2020.04.29. BESSY II at HZB (Germany), article: Corona research: Consortium of Berlin research and industry seeks active ingredients

2020.04.29. Swiss Light Source and SwissFEL at PSI (Switzerland), interview series on the PSI website: Research on Covid-19

2020.04.23. PETRA III at DESY (Germany), article: X-ray screening identifies potential candidates for corona drugs

2020.04.21. MAX IV (Sweden), article: BioMAX switches to remote operations in times of COVID-19

2020.04.16. SLAC (CA / USA), article also with news about research at Stanford Synchrotron Radiation Lightsource (SSRL): SLAC joins the global fight against COVID-19

2020.04.15 Berkeley National Lab (CA/ USA), article with a focus on the research at the Advanced Light Source (ALS):
Staff at Berkeley Lab’s X-Ray Facility Mobilize to Support COVID-19-Related Research

2020.04.07 Diamond Light Source (UK), article: Call for Chemists to contribute to the fight against COVID-19
Crowdfunding: COVID-19 Moonshot

2020.04.07. ANSTO’s Australian Synchrotron (Victoria), article: Aiding the global research effort on COVID-19

2020.04.06. National Synchrotron Light Source II (NSLS-II) at Brookhaven Lab (NY / USA), article: Brookhaven Lab Mobilizes Resources in Fight Against COVID-19

2020.04.02. BESSY II at HZB (Germany), article: Corona research: Two days of measuring operation to find the right key

2020.03.31 Diamond Light Source (UK), article: Jointly with Exscientia and Scripps Research, Diamond aims to accelerate the search for drugs to treat COVID-19

2020.03.27 Argonne National Laboratory with the Advanced Photon Source (APS) and other facilities on-site (IL / USA), article: Argonne’s researchers and facilities playing a key role in the fight against COVID-19

2020.03.27 ANSTO’s Australian Synchrotron (Victoria), article and video: Helping in the fight against COVID-19

2020.03.25 PETRA III at DESY (Germany), article: Research team will X-ray coronavirus proteins

2020.03.23 Diamond Light Source (UK) releases its first animation explaining: SARS-CoV-2 Mpro Single Crystal Crystallography

2020.03.25 CERN Courrier (Switzerland) article about synchrotron research on SARS-CoV-2, written by Tessa Charles (accelerator physicist at the University of Melbourne currently based at CERN, completed her PhD at the Australian Synchrotron): Synchrotrons on the coronavirus frontline

2020.03.19 BESSY II at Helmholtz-Zentrum Berlin (Germany), research publication: Coronavirus SARS-CoV2: BESSY II data accelerate drug development

2020.03.19 BESSY II at Helmholtz-Zentrum Berlin (Germany), technique explanation webpage: Protein crystallography at BESSY II: A mighty tool for the search of anti-viral agents

2020.03.16 Diamond Light Source (UK), article on their “Coronavirus Science” website: Main protease structure and XChem fragment screen

2020.03.12. Elettra Sincrotrone (Italy), article on their website: New project to fight the spread of Coronavirus has been approved

2020.03.05. Advanced Photon Source (IL / USA), article on their website: APS Coronavirus Research in the Media Spotlight

2020.03.05. Advanced Photon Source (IL / USA), research publication: “Crystal structure of Nsp15 endoribonuclease NendoU from SARS-CoV-2,” bioRXiv preprint  DOI: 10.1101/2020.03.02.968388, Article on their website (source: Northwestern University): New Coronavirus Protein Reveals Drug Target

Rapid access

Scientists can apply for rapid access at following facilities (only member facilities of are referenced, the most recent published (or updated) call is mentioned first).

  • The National Synchrotron Light Source II (NSLS-II) in NY / USA is offering a streamlined and expedited rapid access proposal process for groups that require beam time for structural biology projects directly related to COVID-19. The Center for Biomolecular Structure team is supporting remote macromolecular crystallography experiments at Beamlines 17-ID-1 (AMX) and 17-ID-2 (FMX) in this research area. To submit a macromolecular crystallography proposal for COVID-19 related research, use the following form:
  • The Advanced Photon Source (APS) at Argonne National Laboratory in IL / USA  user program is operational to support:

·         Research on SARS-CoV-2 or other COVID-19-related research that addresses the current pandemic.

·         Critical, proprietary pharmaceutical research.

·         Mail-in/remote access work for any research involving low-risk samples and most medium-risk samples (as defined on the APS ESAF form).

·         Limited in situ research (set-up with one person, and ability to carry out majority of experiment safely remotely)

PETRA III at DESY in Germany offers also Fast Track Access for Corona-related research:

Australian Synchrotron at ANSTO makes its macromolecular crystallography beamlines available to structural biologists in response to the COVID-19 pandemic:

North American DOE lightsource facilities have created a platform to enable COVID-19 research. There you can find ressources and points of contact to request priority access:
Structural Biology Resources at DOE Light Sources

Elettra Sincrotrone Trieste in Italy opens to remote acces following beamlines: XRD1, XRD2, SISSI-BIO and MCX thanks to an CERIC-ERIC initiative:

The Advanced Light Source (ALS) at LBNL in California / USA has capabilities relevant to COVID-19 and researchers can apply through their RAPIDD mechanism:

ALBA Synchrotron in Spain offers a COVID-19 RAPID ACCESS on all beamlines:

SOLARIS Synchrotron in Poland gives acces to its Cryo Electron Microscope thanks to an CERIC-ERIC initiative:

Swiss Light Source and Swiss FEL at PSI in Switzerland offer priority access to combating COVID-19:

Diamond Light Source in the United Kingdom opened also a call for rapid access:

Image: Electron density at the active site of the SARS-CoV-2 protease, revealing a fragment bound
Credit: Diamond Light Source

Promising candidates identified for COVID drugs

A team of researchers has identified several candidates for drugs against the coronavirus SARS-CoV-2 at DESY´s high-brilliance X-ray lightsource PETRA III. They bind to an important protein of the virus and could thus be the basis for a drug against Covid-19.

In a so-called X-ray screening, the researchers, under the leadership of DESY, tested almost 6000 known active substances that already exist for the treatment of other diseases in a short amount of time. After measuring about 7000 samples, the team was able to identify a total of 37 substances that bind to the main protease (Mpro) of the SARS-CoV-2 virus, as the scientists report online today in the journal Science. Seven of these substances inhibit the activity of the protein and thus slow down the multiplication of the virus. Two of them do this so promisingly that they are currently under further investigation in preclinical studies. This drug screening – probably the largest of its kind – also revealed a new binding site on the main protease of the virus to which drugs can couple.

Read more on the DESY website

Image: In the control hutch of the PETRA III beamline P11, DESY researcher Wiebke Ewert shows on a so-called electron density map where a drug candidate (green) binds to the main protease of the corona virus (blue).

Credit: DESY, Christian Schmid

The egg in the X-ray beam

Innovative time-resolved method reveals network formation by and dynamics of proteins.

A team of scientists has been using DESY’s X-ray source PETRA III to analyse the structural changes that take place in an egg when you cook it. The work reveals how the proteins in the white of a chicken egg unfold and cross-link with each other to form a solid structure when heated. Their innovative method can be of interest to the food industry as well as to the broad field of research surrounding protein analysis. The cooperation of two groups, headed by Frank Schreiber from the University of Tübingen and Christian Gutt from the University of Siegen, with scientists at DESY and European XFEL, reports the research in two articles in the journal Physical Review Letters.

Eggs are among the most versatile food ingredients. They can take the form of a gel or a foam, they can be comparatively solid and also serve as the basis for emulsions. At about 80 degrees Celsius, egg white becomes solid and opaque. This is because the proteins in the egg white form a network structure. Studying the exact molecular structure of egg white calls for energetic radiation, such as X-rays which is able to penetrate the opaque egg white and has a wavelength that is not longer than the structures being examined.

Read more on the DESY website

Image: When heated, the proteins in the originally transparent chicken egg white form a tightly meshed, opaque network.

Credit: DESY, Gesine Born

Riverine iron survives salty exit to sea

Iron organic complexes in Sweden’s boreal rivers significantly contribute to increased iron concentration in open marine waters, X-ray spectroscopy data shows. A Lund University study in Biogeosciences characterizes the role of salinity for iron-loading in estuarine zones, a factor which underpins intensifying seasonal algal blooms in the Baltic Sea.

The study ties in with a reported trend of increased riverine iron concentrations over the last decade in North America, northern Europe and in particular, Swedish and Finnish rivers. This, in conjunction with a predicted rise in extreme weather events in Scandinavia due to climate change, provides momentum for more bioavailable iron to enter marine environments such as the Baltic Sea.

“The consequences of increasing riverine iron for the receiving [marine] system depend first and foremost on the fate of iron in the estuarine salinity gradient. We had questions on what factors determine the movement and transport capacity of iron in these boreal rivers,” said Simon Herzog, postdoctoral researcher at Lund University.

The research group investigated the iron discharge in eight boreal rivers in Sweden which drain into the Baltic Sea, a brackish marine system. Water samples were taken upstream and at the river mouths, the latter just before estuarine mixing and stronger saline conditions occur. Spring and autumn specimens enabled the comparative analysis of flow conditions. To determine the type and amounts of iron species, measurements with X-ray absorbance spectroscopy (XAS) were taken at beamline I811 at Max-lab in Lund, Sweden and X-ray Absorption Near-Edge Structure (XANES) spectra at beamline ID26 at the European Synchrotron Radiation Facility (ESRF) in Grenoble, France.

Read more on the MAX IV website

Image: A view of the Ore River in northern Sweden

Credit: Simon Herzog

Battling bad bugs

Scientists fight antibiotic resistance by using synchrotron to study scab disease in potatoes.

In the ongoing war against antibiotic resistant bacteria, a change in battle tactics may prove effective for controlling a common disease of plants and potentially other toxins that affect humans and animals.

Although bacterial toxins cause serious, often deadly diseases, “bacteria aren’t trying to be nasty,” said Dr. Rod Merrill, Professor of Molecular and Cellular Biology at the University of Guelph. “They’re hungry and looking for food, and we’re often the food.” He added that 99 per cent of bacteria are helpful – like gut flora – so the battle is against the remaining one per cent.

The usual approach is to develop antibiotics “that kill the bacteria but not us, or the plant, or the animal,” stated Merrill. However, bacteria mutate quickly, as quickly as every 30 minutes, which leads to antibiotic resistance. “And unfortunately, the pipeline for new antibiotics is empty.”

The approach that Merrill and his research group are pursuing is an anti-virulence strategy – finding or designing small molecules that inhibit the tools bacteria use to colonize the host and create infection. “If we can put a lock on their weapons, they can’t get food and will move on so there’s not the same pressure to mutate. We’re going with this approach because we think it’s time to change up tactics.”

Read more on the CLS website

Image: Scabin crystals

Credit: CLS

New targets for antibodies in the fight against SARS-CoV-2

An international team of researchers examined the antibodies from a large cohort of COVID-19 patients. Due to the way antibodies are made, each person that is infected has the potential to produce many antibodies that target the virus in a slightly different way. Furthermore, different people produce a different set of antibodies, so that if we were to analyse the antibodies from many different patients, we would potentially be able to find many different ways to neutralise the virus.

The research article in the journal Cell is one of the most comprehensive studies of its kind so far. It is available online now and will be published in print on 15 April. These new results now show that there are many different opportunities to attack the virus using different antibodies over a much larger area than initially thought/mapped.

Professor Sir Dave Stuart, Life Sciences Director at Diamond and Joint head of Structural Biology at the University of Oxford, said:

SARS CoV-2 is the virus that causes COVID-19. Once infected with this virus, the human immune system begins to fight the virus by producing antibodies. The main target for these antibodies is the spike protein that protrudes from the virus’ spherical surface. The spike is the portion of the virus that interacts with receptors on human cells. This means that if it becomes obstructed by antibodies, then it is less likely that the virus can interact with human cells and cause infection.

By using Diamond Light Source, applying X-ray crystallography and cryo-EM, we were able to visualise and understand antibodies interact with and neutralize the virus. The study narrowed down the 377 antibodies that recognize the spike to focus mainly on 80 of them that bound to the receptor binding domain of the virus, which is where the virus spike docks with human cells.

Read more on the Diamond website

Image: Figure from the publication showing how the receptor binding domain resembles a human torso.

Credit: The authors (Cell DOI: 10.1016/j.cell.2021.02.032)

Game on: Science Edition

After AIs mastered Go and Super Mario, Brookhaven scientists have taught them how to “play” experiments at NSLS-II

Inspired by the mastery of artificial intelligence (AI) over games like Go and Super Mario, scientists at the National Synchrotron Light Source II (NSLS-II) trained an AI agent – an autonomous computational program that observes and acts – how to conduct research experiments at superhuman levels by using the same approach. The Brookhaven team published their findings in the journal Machine Learning: Science and Technology and implemented the AI agent as part of the research capabilities at NSLS-II.

As a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE’s Brookhaven National Laboratory, NSLS-II enables scientific studies by more than 2000 researchers each year, offering access to the facility’s ultrabright x-rays. Scientists from all over the world come to the facility to advance their research in areas such as batteries, microelectronics, and drug development. However, time at NSLS-II’s experimental stations – called beamlines – is hard to get because nearly three times as many researchers would like to use them as any one station can handle in a day—despite the facility’s 24/7 operations.

“Since time at our facility is a precious resource, it is our responsibility to be good stewards of that; this means we need to find ways to use this resource more efficiently so that we can enable more science,” said Daniel Olds, beamline scientist at NSLS-II and corresponding author of the study. “One bottleneck is us, the humans who are measuring the samples. We come up with an initial strategy, but adjust it on the fly during the measurement to ensure everything is running smoothly. But we can’t watch the measurement all the time because we also need to eat, sleep and do more than just run the experiment.”

Read more on the Brookhaven website

Image: NSLS-II scientists, Daniel Olds (left) and Phillip Maffettone (right), are ready to let their AI agent level up the rate of discovery at NSLS-II’s PDF beamline.

Credit: Brookhaven National Lab

Building knowledge of changes in uranium chemistry

ANSTO’s considerable expertise in characterising uranium-containing compounds has contributed to a new systematic investigation of the origins of atomic structural distortions in a family of actinide compounds.

These compounds are known as rutile-related mixed metal ternary (three-part) uranium oxides. Rutile refers to mineral compounds composed primarily of titanium dioxide.

In research published in Inorganic Chemistry, a large team of researchers used both neutron and synchrotron radiation and theoretical calculations to establish systematically precise and accurate crystal structures and uranium oxidation states in the rutile-related mixed metal ternary uranium oxide systems.

Read more on the ANSTO website

Image:  Dr Zhaoming Zhang, Principal Research Scientist, Nuclear Fuel Cycle, ANSTO

Credit: ANSTO

Looking for photochemistry inside particles

At the Swiss Light Source (SLS), a new photochemical reaction cell was developed for the X-ray microscope at the PolLux beamline. This allowed the researchers to mimic sunlight mediated chemical reactions in airborne particles we normally inhale. Utilizing the new reaction cell, the X-ray microscope was used to image the interior of particles for the chemistry that produced a high concentration of persistent carbon centered radicals (CCR) and reactive oxygen species (ROS), which are harmful compounds when inhaled and can cause damage in the respiratory tract. Two main factors were 1) a very high particle viscosity that effectively locks the CCRs in a glass-like state and 2) oxygen deficiency, or anoxia, to prevent smaller ROS to be formed with a shorter lifetime that easily diffuse out of the particle before inhalation. When relative humidity in air is <60%, particles can become highly viscous or even glass-like, which drastically reduces the mobility of all molecules. Although sunlight induced radical formation is likely to be unhindered, high viscosity would instead inhibit molecular diffusion and block oxygen from accessing the particle interior. This leads to preservation of large amounts of radicals. Amazingly, this may apply to all organic light absorbing atmospheric compounds making radical abundance and persistence an unforeseen issue until now.

Particles composed of citric acid and iron were investigated as a model for iron containing organic particles. About 1 in 20 airborne particles contain iron in urban areas at a significant concentration as identified by previous studies. The oxidation state of iron was mapped across individual particles using X-ray spectromicroscopy to reveal where photochemical reactions, oxidation and molecular diffusion took place inside. Oxidation and formation of ROS took place rapidly, but surprisingly, only near the particle surfaces, i.e. an oxidized reaction front extending only hundreds of nanometers was directly observed. This was entirely due to the rapid depletion of oxygen in the particle due to slow molecular transport and fast reaction cycling. In addition to X-ray microscopy, the researchers used an electrodynamic balance (collaboration with ETHZ) and a coated wall flow tube reactor to study these radical forming particles and constrain the overall reactive cycle and the production and release of radicals to air.

Read more on the PSI website

Image: A chemical scheme and X-ray image showing particles oxidized only near their surface. Light in iron-organic particles start a cycle of oxidizing reactions (purple text) forming carbon centered radicals (yellow text) and reactive oxygen species (red text). We directly imaged oxidation happening only near the particle surfaces indicated by the brighter colour in micrometer and submicrometer viscous particles in the right image.

Credit: PSI

Expanding horizons with a new instrument

Work is in full swing to construct the new European XFEL instrument SXP. Manuel Izquierdo, who is the Group Leader for SXP since December 2020, gave insights into how the instrument will expand the European XFEL portfolio, when it is set to begin operations and what his vision is for the instrument at this stage.

How would you describe the SXP instrument?

SXP stands for “Soft X-ray Port”. This name was chosen in keeping with the core idea of the project, that is, to provide the users an FEL beamline where they can temporarily set up their own experiment stations. And, this is what makes the instrument unique: users can bring and operate their own experiment stations. This will allow many techniques and experiments to be implemented. The successful proposals would be those that cannot be performed at the two soft X-ray instruments SCS or SQS. So basically, the idea is that the SXP instrument will expand the portfolio of techniques available to users at European XFEL.

What kind of experiments will be performed at SXP? 

In principle it is up to the user community to suggest. So far, three communities have contributed to the project. One community aims to use European XFEL as a laboratory for astrophysics, atomic physics, and fundamental research investigating highly charged ions. A second community proposed studies on chemical bond activation in biological reactions and inorganic catalysts. The third and biggest community aims to perform time and angle-resolved photoelectron spectroscopy experiments in solids. This technique will allow understanding the atomic structure, chemical, electronic and magnetic properties of materials. The counter part for atoms, molecules and clusters can be done at the SQS instrument.

Read more on the European XFEL website

Image: Panorama view of the SASE3 beamline, which feeds SQS and SCS, and will now include SXP

Credit: Photograph by Dirk Nolle (Copyright: DESY)

Strong and resilient synthetic tendons produced from hydrogels

Human tissues exhibit a remarkable range of properties. A human heart consists mostly of muscle that cyclically expands and contracts over a lifetime. Skin is soft and pliable while also being resilient and tough. And our tendons are highly elastic and strong and capable of repeatedly stretching thousands of times per day. While limited success has been achieved in producing man-made materials that can mimic some of the properties of natural tissues (for instance polymers used as synthetic skin for wound repair) scientists have failed to create artificial materials that can match all the outstanding features of tendons and many other natural tissues. An international team of researchers has transformed a standard hydrogel into an artificial tendon with properties that meet and even surpass those of natural tendons. This new material was examined via electron microscopy and x-ray scattering to reveal the microscopic structures responsible for its outstanding features. The x-ray measurements were gathered at the U.S. Department of Energy’s (DOE’s) Advanced Photon Source (APS). The researchers have shown that their new hydrogel-based material can be modified to mimic a variety of human tissues and could also potentially be adapted to non-biological roles. Their results were published in the journal Nature.

Read more on the APS website

Image: Fig. 1. SEM images (left) showing the deformation of the mesh-like nanofibril network during stretching and corresponding in situ SAXS patterns (right). Scale bars, 1 μm (SEM images); 0.025 Å−1 (SAXS images)

Credit: From M. Hua et al., Strong tough hydrogels via the synergy of freeze-casting and salting out,” Nature 590, 594 (25 February 2021). © 2021 Springer Nature Limited

Researchers watch nanomaterials growing in real time

For the first time, a team of scientists including from DESY has succeeded in capturing in real time the first few milliseconds in the life of a gold coating as it forms on a polymer. The team used PETRA III to observe the earliest stages in the growth of a metal-polymer hybrid material as a film of gold was applied to a polymer carrier, in a process that can be used in industrial applications. The group’s research, which it presented now in the journal Nanoscale Horizons, not only offers important new insights into how innovative hybrid nanomaterials form, it also sets a new world record in the temporal resolution achieved using GISAXS, a surface-sensitive scattering technique.

Metal-polymer materials form the basis of modern flexible electronics, such as organic field effect transistors (OFET) or novel television screens (OLED). A detailed understanding of the manufacturing process is essential in order to manufacture such composites using smaller amounts of starting materials, to make them more energy-efficient and to be able to use them more flexibly.

Read more on the DESY website

Image: Experimental setup on beamline P03: The high-brilliance X-ray beam from PETRA III (magenta) is scattered by the surface structures while gold atoms are rapidly deposited on wafer-thin layers of plastic. The deflected X-ray light is recorded using a special high-speed camera designed at DESY. The sophisticated analysis of the real-time data obtained provides clues about the change in the sizes, distances and density profile of the resulting metal-polymer boundary layer

Credit: DESY/M. Schwartzkopf

High-pressure experiments provide insight into icy planets

Research team determines compression behaviour of water ice in unprecedented detail

An international team of scientists has been using X-rays to take a look inside distant ice planets. At the PETRA III Extreme Conditions Beamline, they investigated how water ice behaves at high pressure, under conditions corresponding to those inside the planet Neptune, for example. At pressures up to almost two million times atmospheric pressure at sea level on Earth, the researchers were able to observe in unparalleled detail how water ice behaves under compression. The team, led by Hauke Marquardt from the University of Oxford, is presenting its findings in the scientific journal Physical Review B.

Planetary ices – such as water ice (H2O), methane ice (CH4) and ammonia ice (NH3) – make up large parts of the ice giants in our solar system and are very likely to occur inside many exoplanets, which are planets outside our solar system. “However, the physical properties and phase diagrams of these compounds are not sufficiently known at the pressures and temperatures that prevail inside planets,” explains Marquardt. “Previous experimental studies using X-ray diffraction in a static diamond anvil cell have contributed a great deal to our understanding of ices at high pressure, but they have been unable to adequately answer numerous questions.”

Read more on the DESY website

Image : Ice at room temperature: A mixture of water ice and liquid water in a high-pressure cell at a temperature around 25 degrees Celsius and a pressure of one gigapascal, which corresponds to 10 000 times atmospheric pressure

Credit: DESY, Hanns-Peter Liermann

Minerals let Earth’s oceans seep down deeper than expected

Amphiboles could carry the volume of the Arctic Ocean into Earth’s mantle in 200 million years

A bigger volume of the world’s oceans is seeping deeper into Earth’s mantle than expected: That is the result of a study investigating a water-bearing mineral abundant in the oceanic crust. High-pressure experiments at DESY’s X-ray source PETRA III show that the mineral glaucophane is surprisingly stable up to 240 kilometres underground, which means it also carries water down to this depth. Scientists attribute this to the gradual cooling of Earth’s interior over geological timescales. The cooler temperatures let glaucophane and possibly other water-bearing minerals survive to greater pressures, as the team headed by Yongjae Lee from Yonsei University in South Korea reports in the journal Nature Communications. The scientists estimate that in about 200 million years, an additional volume equal to the Arctic Ocean could seep deep into Earth’s mantle this way.

Read more on the DESY website

Image: In the high-pressure cell, glaucophane samples are heated and squeezed between two diamond anvils

Credit: Yonsei University, Yoonah Bang/Huijeong Hwang

Towards catalysts for solar hydrogen production

Thin films of molybdenum and sulfur belong to a class of materials that can be considered for use as photocatalysts. Inexpensive catalysts such as these are needed to produce hydrogen as a fuel using solar energy. However, they are still not very efficient as catalysts. A new instrument at the Helmholtz-Berlin Zentrum’s BESSY II now shows how a light pulse alters the surface properties of the thin film and activates the material as a catalyst.

MoS2 thin films of superposed alternating layers of molybdenum and sulfur atoms form a two-dimensional semiconducting surface. However, even a surprisingly low-intensity blue light pulse is enough to alter the properties of the surface and make it metallic. This has now been demonstrated by a team at BESSY II.

Read more on the HZB website

Image: A new instrument at BESSY II can be used to study molybdenum-sulfide thin films that are of interest as catalysts for solar hydrogen production. A light pulse triggers a phase transition from the semiconducting to the metallic phase and thus enhances the catalytic activity.

Credit: © Martin Künsting /HZB

Making sense of the brain’s circuits

“The brain is one of the most intricate machines that exist, and we still don’t know how it works”, says Carles Bosch Piñol, senior neuroscientist at the Francis Crick Institute in London. His research focuses on understanding how neuronal circuits receive, process and propagate information to drive behaviour. This information is encoded by hierarchical structures of sizes ranging from millimetres (neural circuits) and hundreds of microns (neuronal dendritic trees) to few nanometres (synapses). “We came to the ESRF’s ID16A beamline to find out how these circuits work”, he explains.

Bosch and his colleagues just finished a successful remote experiment. Previous experiments with the same sample provided information on how the neurons in that circuit responded to stimuli, and synchrotron imaging with full-field tomography revealed sub-µm detail on the circuit’s structure. At ESRF they wanted to obtain an even more detailed insight of the structure using X-ray holotomography, which would allow to resolve a very important subset of neuronal cables.

Read more on the ESRF website

Image: Planned acquisition of a neural circuit with holotomography. Diagram showing a top view of the specimen (edges in navy blue) and its regions of interest (in vivo recorded cell bodies in brown, genetically-tagged glomerulus in white). Tiles were planned and priority-ranked (a) with enough overlap so they can be all stitched into a single continuous volume dataset (b). (c-d) Lateral dendrites (green, nucleus in brown) are resolved (c) and can be followed until exiting the tile (d).

Credit: C. Bosch