Precise test of quantum physical tunnel effect at DESY’s X-ray laser FLASH

Partnership at a distance: deep-frozen helium molecules

Helium atoms are loners. Only when you cool them to very low temperatures do they form extremely weakly bonded molecules. Yet even in this state, they are able to maintain an extremely large separation from each other thanks to quantum tunnelling. With the help of DESY’s free-electron laser FLASH, Frankfurt nuclear physicists have been able to confirm that the atoms spend more than 75 percent of their time so far apart from each other that their bond can only be explained by means of quantum tunnelling. The scientists have presented their findings in the US journal “Proceedings of the National Academy of Sciences” (PNAS).

The binding energy of a helium molecule is approximately one billionth of the binding energy of everyday molecules like oxygen or nitrogen. On top of this, the molecule is so huge that small viruses or soot particles could actually pass between the atoms. Physicists explain this in terms of quantum tunnelling. They visualise the bond in a classical molecule as a potential well, in which atoms cannot get further apart from each other than by going to opposite “walls”. However, quantum theory also allows atoms to tunnel inside these walls. “It is as if each of them were to dig a shaft without an exit,” explains Reinhard Dörner, a professor at the Institute of Nuclear Physics at the Goethe University in Frankfurt.


>Read more on the FLASH website

Cartoon: “When two loners are forced to share a bed, they move well beyond its edges to get away from each other.”
Credit: Peter Evers