New method for imaging electronic orbitals in solids

Orbital states are quantum mechanical constructions that describe the probability to find an electron in an atom, molecule or solid.  We know from atomic physics that an s-orbital is spherical or that a p-orbital is dumbbell-shaped, but how do the complicated distributions of the electrons that contribute to chemical bonds in solids look like?  Knowledge of these orbital states or electron distributions is the basis for our understanding of chemical bonds and related physical properties, which is a crucial step towards tailoring materials with specific characteristics. Here X-ray spectroscopy has contributed tremendously, however, the interpretation of the spectra is not easy and is often based on some assumptions for the analysis of the data.  Hence it would be very important to have an experimental method that gives a direct image of the local electron density.

Image: (a) (b) Integrated intensities of the M1 transition 3s→3d in the Fig. above plotted on the respective projections of the 3A2 3d(x2-y2/3z2-r2) orbital of Ni2+. (c) The three dimensional plot of the 3A2 3d(x2-y2/3z2-r2) orbital (more specific: the hole density) with the projections as in (a) and (b), respectively.
Credit: © MPI CPfS

Unraveling plants resistance to drought

Research investigates the chemical nanostructure of water conducting vessels.

Plant cells are encased in a structure called the cell wall, composed mainly of cellulose and lignin. Among other functions, this wall gives structural stability to the cells and controls the entry of water, minerals and other substances. When they die, the cells leave behind their cell wall, forming different structures that support the plant giving rigidity to the stems and that facilitate the transport of substances from the roots to the leaves and vice versa. One such structure is the xylem: a continuous network of conduits about 100 micrometers in diameter that carries the water absorbed by the roots to the leaves.

When they lose water by transpiration, the leaves generate tension in the water column within the xylem. The pressure difference between the interior and exterior of the conduit causes the molecules to behave as links in a current: when a molecule of water evaporates, the rest of the “current” is pulled up.

>Read more on the Brazilian Synchrotron Light Laboratory at CNPEM website

Image: Schematic figure of the technique of infrared nanospectroscopy.

How virtual photons alter atomic X-ray spectra

Control out of the vacuum, virtually

Certain X-ray optical properties of metal atoms can be controlled with the help of virtual photons. This has been demonstrated for the first time by a DESY research team at PETRA III, by using the highly brilliant radiation from this X-ray light source at DESY. In the journal Physical Review Letters they report on how the X-ray spectra of metal atoms can be controlled by virtual photons. This opens up new possibilities for specifically modifying the X-ray optical properties of materials.
So-called virtual photons play an important role in the interaction of light and matter. This is quite remarkable because they do not exist in the classical sense. Virtual photons are created in the vacuum out of nothing and then disappear again after an extremely short time. If these photons interact during their short existence with the electrons of an atom, the binding energies of the electrons shift ever so slightly.

>Read more on the PETRA III website at DESY

Image: Experimental setup to measure the collective Lamb shift at tantalum.
Credit: DESY, Haber et al.

HIPPIE provides a closer look at water filtration

Clean fresh water is a scarce resource. Areas of the world suffering from drought have to filter the salt out of seawater to make it drinkable. In other areas, the water may instead have a high content of toxic compounds, such as arsenic.
If you think about a water filter as a kind of strainer with tiny holes through it, you would assume that since it does a pretty good job of filtering out the small ions of normal table salt, sodium, and chloride, from seawater it would work even better for the larger arsenic compounds. This is however not the case when it comes to desalination – the technology for producing fresh water from seawater; quite the opposite actually. While sodium and chloride are removed effectively, other, much larger contaminants pass through the filtration materials that are typically used. That indicates there must be another mechanism at work here.

>Read more on the MAX IV Laboratory website

The best topological conductor yet: spiraling crystal is the key to exotic discovery

X-ray research at Berkeley Lab reveals samples are a new state of matter

The realization of so-called topological materials – which exhibit exotic, defect-resistant properties and are expected to have applications in electronics, optics, quantum computing, and other fields – has opened up a new realm in materials discovery.
Several of the hotly studied topological materials to date are known as topological insulators. Their surfaces are expected to conduct electricity with very little resistance, somewhat akin to superconductors but without the need for incredibly chilly temperatures, while their interiors – the so-called “bulk” of the material – do not conduct current.
Now, a team of researchers working at the Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) has discovered the strongest topological conductor yet, in the form of thin crystal samples that have a spiral-staircase structure. The team’s study of crystals, dubbed topological chiral crystals, is reported in the March 20 edition of the journal Nature.

>Read more on the ALS at Berkeley Lab website

Image: This illustration shows a repeated 2D patterning of a property related to electrical conductivity, known as the surface Fermi arc, in rhodium-silicon crystal samples.
Credit: Hasan Lab/Princeton University

Towards X-ray transient grating spectroscopy at SwissFEL

The high brilliance of new X-ray sources such as X-ray Free Electron Laser opens the way to non-linear spectroscopies.

These techniques can probe ultrafast matter dynamics that would otherwise be inaccessible. One of these techniques, Transient Grating, involves the creation of a transient excitation grating by crossing X-ray beams on the sample. Scientists at PSI have realized a demonstration of such crossing by using an innovative approach well suited for the hard X-ray regime. The results of their work at the Swiss Free Electron Laser have been published in the journal Optics Letters.
Non-linear optics is an important field of physics where the non-linear response of matter in extreme electromagnetic fields is studied and exploited for novel applications. It has been widely used for creating new laser wavelengths (Sum/Difference Frequency Generation – S/DFG) as well as for studying a variety of properties such as charge, spin, magnetic transfer as well as heat diffusion. A broad class of non-linear spectroscopy is Four Wave Mixing (FWM) where three laser beams are overlapped in space and time in a sample and a fourth beam with different wavelength and angle is detected, background free. This allows studying specific transitions and selectively excite the sample tuning the incoming beams’ wavelength while studying their dynamics by controlling the relative time delays between the laser pulses. Transient Grating (TG) spectroscopy is a special case of degenerate FWM where two of the incoming beams have the same wavelength and are crossed at the sample creating an interference pattern, or transient grating, which excites the sample as long as the field is present. When the TG impinges on the material, its index of refraction is locally perturbed and electrons exposed to the radiation are excited. These electrons then transfer their extra energy to the lattice and the heat is then dissipated by the system. A third beam, delayed with respect to the pump TG, probes the dynamics of this excitation.

>Read more on the SwissFEL at PSI website

Image: Layout depicting the experimental conditions at the Alvra experimental station. (Find all the details here)

Water is more homogeneous than expected

In order to explain the known anomalies in water, some researchers assume that water consists of a mixture of two phases even under ambient conditions.

However, new X-ray spectroscopic analyses at BESSY II, ESRF and Swiss Light Source show that this is not the case. At room temperature and normal pressure, the water molecules form a fluctuating network with an average of 1.74 ± 2.1% donor and acceptor hydrogen bridge bonds per molecule each, allowing tetrahedral coordination between close neighbours.
Water at ambient conditions is the matrix of life and chemistry and behaves anomalously in many of its properties. Since Wilhelm Conrad Röntgen, two distinct separate phases have been argued to coexist in liquid water, competing with the other view of a single-phase liquid in a fluctuating hydrogen bonding network – the continuous distribution model. Over time, X-ray spectroscopic methods have repeatedly been interpreted in support of Röntgen’s postulate.

>Read more on the BESSY II at HZB website

Image: Water molecules are excited with X-ray light (blue). From the emitted light (purple) information on H-bonds can be obtained.
Credit: T. Splettstoesser/HZB

Single atoms can make more efficient catalysts

Detailed observations of iridium atoms at work could help make catalysts that drive chemical reactions smaller, cheaper and more efficient.

Catalysts are chemical matchmakers: They bring other chemicals close together, increasing the chance that they’ll react with each other and produce something people want, like fuel or fertilizer.

Since some of the best catalyst materials are also quite expensive, like the platinum in a car’s catalytic converter, scientists have been looking for ways to shrink the amount they have to use.

Now scientists have their first direct, detailed look at how a single atom catalyzes a chemical reaction. The reaction is the same one that strips poisonous carbon monoxide out of car exhaust, and individual atoms of iridium did the job up to 25 times more efficiently than the iridium nanoparticles containing 50 to 100 atoms that are used today.

>Read more on the SSRL at SLAC website

Image: Scientists used a combination of four techniques, represented here by four incoming beams, to reveal in unprecedented detail how a single atom of iridium catalyzes a chemical reaction.
Credit: Greg Stewart/SLAC National Accelerator Laboratory

Doped epitaxial graphene close to the Lifshitz transition

Graphene, an spbonded sheet of carbon atoms, is still attracting lots of interest almost 15 years after its discovery. Angle-resolved photoemission spectroscopy (ARPES) is a uniquely powerful method to study the electronic structure of graphene and it has been used extensively to study the coupling of electrons to lattice vibrations (phonons) in doped graphene. This electron-phonon coupling (EPC) manifests as a so-called “kink” feature in the electronic band structure probed by ARPES. What is much less explored is the effect of EPC on the phonon structure. A very accurate probe of the phonons in graphene is Raman spectroscopy.
M.G. Hell and colleagues from Germany, Italy, Indonesia, and Japan combined ARPES (carried out at the BaDelPhbeamline – see Figure 1) with low energy electron diffraction (LEED) and Raman spectroscopy (carried out at the University of Cologne in Germany) in a clever way to fully understand the coupled electron-phonon system in alkali metal doped graphene. LEED revealed ordered (1×1), (2×2), and (sqrt3xsqrt3)R30°adsorbate patterns with increasing alkali metal deposition. The ARPES analysis yielded not only the carrier concentration but also the EPC coupling constant. Ultra-High Vacuum (UHV) Raman spectra carried out using identically prepared samples with the very same carrier concentrations provided the EPC induced changes in the phonon frequencies.

>Read more on the Elettra Sincrotrone Trieste website

Image:  Top: ARPES spectra along the Γ-K-M high symmetry direction of the hexagonal Brillouin zone for Cs doped graphene/Ir(111) with increasing Cs deposition. The Dirac energy ED and the observed LEED reconstruction are also indicated. Bottom: Corresponding Fermi surfaces at the indicated charge carrier concentration. 

The quest for better medical imaging at MAX IV

Advances in the world of physics often quickly lead to advances in the world of medical diagnostics. From the moment Wilhelm Röntgen discovered X-rays he was using them to look through his wife’s hand.

A lot of the physics principles at the foundation of MAX IV are also at the foundation of medical imaging technologies such as nuclear magnetic resonance imaging, x-ray computed tomography and positron emission tomography.
Positron emission spectroscopy is more commonly known as PET imaging. It’s a method used to study metabolic processes in the body as a research tool but also to diagnose disease. An important use today is in the diagnosis of metastases in cancer patients, but it can also be used to diagnose certain types of dementia.

In PET, a positron-emitting radionuclide is injected into a patient and travels around the body until it accumulates somewhere, depending on the chemical composition. For example, the fluorine-18 radionuclide when bound to deoxyglucose accumulates in metabolically active cells which is useful for finding metastases. The radionuclide is unstable and emits positrons which is the antimatter equivalent of an electron. When a positron and an electron inevitably meet, they annihilate one another, producing two pulses of gamma radiation traveling in opposite directions. By placing a detector around a patient, it is possible to measure the gamma radiation and convert the signal into something that can be more easily measured. These detectors are made up of materials known as scintillators which take high energy radiation and emit lower energy radiation that can be detected using fast photodetectors – photomultiplier tubes.

>Read more on the MAX IV Laboratory website

 

Expanding the infrared nanospectroscopy window

The ability to investigate heterogeneous materials at nanometer scales and far-infrared energies will benefit a wide range of fields, from condensed matter physics to biology.

Scientific studies require tools that match the natural length and energy scales of the phenomena under investigation. For many questions in biology, quantum materials, and electronics, this means nanometer spatial resolution combined with far-infrared energies. For example, scientists might want to study collective electron oscillations in quantum materials for optoelectronic circuits, or the characteristic vibration modes of protein molecules in biological systems.

A recently developed infrared technique—synchrotron infrared nanospectroscopy (SINS)—combines broadband synchrotron light with atomic-force microscopes to enable infrared imaging and spectroscopy at the nanoscale. However, the technique could only be used in a narrow range of the electromagnetic spectrum that excluded far-infrared wavelengths, due to a scarcity of suitable light sources and detectors for that range. In this work, researchers extended SINS to far-infrared wavelengths, opening up a whole new experimental regime.

> Read more on the Advanced Lightsource at Berkeley Lab website

Image: Left: Nanoscale images of SiO2 hole array, obtained using atomic-force microscopy (AFM, top) and synchrotron infrared nanospectroscopy (SINS, bottom), demonstrating SINS contrast between patterned SiO2 and underlying Si substrate with ~30 nm spatial resolution (inset). Scale bar = 200 nm. Right: SINS broadband spectroscopic data for SiO2, taken along dotted line in images at left, showing amplitude (top) and phase (bottom) information from asymmetric  Si–O stretching (1200 cm–1) and bending (460 cm–1) modes. The lower-energy bending mode had previously been inaccessible with this technique.

Direct Observation of the Kinetics of Gas–Solid Reactions

… using in-situ kinetic and spectroscopic techniques.

Copper oxide is a widely used adsorptive material that removes trace amounts of H2S from various process streams via chemical reaction to form copper sulfide. At room temperature the thermodynamics favor a near complete conversion of CuO to copper sulfide in the presence of H2S. However, in application, the extent of conversion of the CuO to copper sulfide during reaction can be influenced by many factors, including the initial crystalline state of the CuO, and the rate at which solid products accumulate on the reactive surfaces or within pores of the CuO particles. This incomplete utilization of CuO is problematic for industrial applications because it typically leads to oversized equipment and/or frequent process shutdowns. Developing fundamental insight at the atomic scale for this reaction could overcome these limitations by providing a rational basis for the design of new materials and by leading to predictive models that allow for current materials to be operated toward their thermodynamic limits. Thus, experiments that combine reaction kinetic testing while also simultaneously capturing chemical and structural changes in the solid phase at multiple length scales are necessary to elucidate the fundamentals of these reactions at various length scales.

Previous studies were successful in semi-quantitatively relating properties of materials to performance in fixed-bed systems, however, differences in performance were often attributed to physical properties at the >10 mm scale (e.g., surface area, pore volume, bulk density). The effects of molecular scale material characteristics (e.g., microscopic shape, metal oxide crystallite size, and surface composition) were rarely investigated, thus, it is difficult to extend the conclusions from these studies across a broad range of conditions and materials.

>Read more on the SSRL at SLAC website

Image (extract): (A) CuO and CuS concentration maps derived from XANES analysis of TXM images of individual CuO particle during reaction with 1000 ppm H2S. (B) Fractional conversion versus time (derived from linear combination fitting of Cu K-edge XANES) of fixed beds of CuO particles consisting of 2 different crystallite sizes (red circles are 2.8 nm and blue squares are 28 nm) and of individual CuO particles. See the entire figure here.

Synchrotron infrared beamline optics optimized…

…for nano-scale vibrational spectroscopy. First experimental report of a special optical layout dedicated to correct typical aberrations derived from large extraction ports in IR beamlines.

Infrared nanospectroscopy represents a major breakthrough in chemical analysis since it allows the identification of nanomaterials via their natural (label free) vibrational signatures. Classically powered by laser sources, the experiment called scattering Scanning Near-field Optical Microscopy (s-SNOM) has become a standard tool for investigations of chemical and optical properties of materials beyond the diffraction limit of light.

Lately, s-SNOM is achieving unprecedent sensitivity range by exploring the outstanding spectral irradiance of synchrotron light sources in the full range of infrared (IR) radiation. In the last few years, the combination of s-SNOM and ultra-broadband IR synchrotron (SINS or nano-FTIR) has helped studies in relevant scientific fronts involving atomic layered materials, fundamental optics, nanostructured bio-materials and, very recently, it was demonstrated to be feasible to work in the far-IR.

IR ports in synchrotron storage rings can be up to a thousand times more brilliant than classical IR black body sources. This advantage allowed IR beamlines to be the only places capable of performing IR micro-spectroscopy for many years. However, in comparison to X-ray ports, IR beamlines require large apertures for allowing long wavelengths to be extracted. Consequently, IR beamlines typically present optical aberrations such as extended source depth and coma.

>Read more on the Brazilian Synchrotron Light Laboratory website

Images (extracts): Figure 1 – Proposed optical layout, IR extraction chamber indicating the source depth, conical mirror illustration, aberration-corrected focal spot at the sample stage and nano-FTIR experimental scheme in operation in the IR endstation of the LNLS. Figure adapted from R. Freitas et al., Optics Express 26, 11238 (2018).

SESAME hosts its first users

Mid July, the first users arrived at SESAME to perform experiments using the Centre’s XAFS/XRF (X-ray absorption fine structure/X-ray fluorescence) spectroscopy beamline, SESAME’s first beamline to come into operation.

This was the Finnish Kirsi Lorentz and three of her colleagues at The Cyprus Institute: the Cypriot Grigoria Ioannou, the Japanese Yuko Miyauchi and the Greek/Egyptian Iosif Hafez, who together form a true international team in the spirit of SESAME.

Kirsi is the author of one of the 19 proposals from 5 of the SESAME Members (Cyprus, Egypt, Jordan, Pakistan and Turkey) that have been recommended for a total of 95.8 hour shifts on the XAFS/XRF beamline by SESAME’s Proposal Review Committee (PRC). The PRC is an international advisory body that evaluates the scientific and technological merit of proposals from the General Users and determines their priority using criteria based on IUPAP’s Recommendations for the Use of Major Physics Users Facilities.

“This heralds in a new stage in SESAME’s march forward, and for scientists in the SESAME Members and the region it is the tangible beginning of a moment from when it becomes possible to carry out state-of-the-art research in the region” said Khaled Toukan, Director of SESAME.

 “It is a unique opportunity and a real honour to be the first user of a synchrotron light facility – a research visit to remember” said Kirsi, who is examining ancient human remains from the Eastern Mediterranean and the Near East, adding “we are very excited with the results we obtained at the SESAME XAFS/XRF beamline, and grateful to all those who have worked so hard to bring this crucial research facility into operation in our region”.

>Read more on the SESAME website

Picture: Kirsi Lorentz, The Cyprus Institute: Kirsi Lorentz and her research team (from left to right: Yuko Miyauchi, Grigoria Ioannou, Kirsi Lorentz and Iosif Hafez) at the XAFS/XRF beamline control hutch.

High-caliber research launches NSLS-II beamline into operations

Pratt & Whitney conduct the first experiments at a new National Synchrotron Light Source II beamline.

A new experimental station (beamline) has begun operations at the National Synchrotron Light Source II (NSLS-II)—a U.S. Department of Energy (DOE) Office of Science User Facility at DOE’s Brookhaven National Laboratory. Called the Beamline for Materials Measurement (BMM), it offers scientists state-of-the-art technology for using a classic synchrotron technique: x-ray absorption spectroscopy.

“There are critical questions in all areas of science that can be solved using x-ray absorption spectroscopy, from energy sciences and catalysis to geochemistry and materials science,” said Bruce Ravel, a physicist at the National Institute of Standards and Technology (NIST), which constructed and operates BMM through a partnership with NSLS-II.

X-ray absorption spectroscopy is a research technique that was developed in the 1980s and, since then, has been at the forefront of scientific discovery.

“The reason we’ve used this technique for 40 years and the reason why NIST built the BMM beamline is because it adds a great value to the scientific community,” Ravel explained.

The first group of researchers to conduct experiments at BMM came from jet engine manufacturer Pratt & Whitney. Senior Engineer Chris Pelliccione and colleagues used BMM to study the chemistry of jet engines.

>Read more on the National Synchrotron Light Source II (NSLS-II) website

Image: Pratt & Whitney Senior Engineer Chris Pelliccione (left) with NIST’s Bruce Ravel (right) at BMM’s workstation.

An electrifying view on catalysis

The future of chemistry is ‘electrifying’: With increasing availability of cheap electrical energy from renewables, it will soon become possible to drive many chemical processes by electrical power. In this way, chemical products and fuels can be produced via sustainable routes, replacing current processes which are based on fossil fuels.

In most cases, such electrically driven reactions make use of so-called electrocatalysts, complex materials which are assembled from a large number of chemical componentAs. The electrocatalyst plays an essential role: It helps to run the chemical reaction while keeping the loss of energy minimal, thereby saving as much renewable energy as possible. In most cases, electrocatalysts are developed empirically and the chemical reactions at their interfaces are poorly understood. A better understanding of these processes is essential, however, for fast development of new electrocatalysts and for a directed improvement of their lifetime, one of the most important factors that currently limit their applicability.

>Read more on the Elettra website

Figure:  Introducing well-defined model electrocatalysts into the field of electrochemistry.