Unravelling the growth mechanism of the coprecipitation of iron oxide nanoparticles

Applications involving iron oxide nanoparticles (IONPs) and nanomaterials in general, are expected to provide solutions to many problems in the fields of healthcare, energy and environment. Magnetic nanoparticles (such as IONPs) have been in the exploratory stage for cancer diagnostic (e.g.in the form of magnetic resonance imaging contrast agents) for more than three decades and treatment (e.g.via hypothermia) in the recent decade. However, success stories are rare, partly due to the limited performance of commercially available nanoparticles, related to the particle quality attributes such as size and shape, polydispersity, crystallinity and surface chemistry. Although today’s literature provides many reports on the synthesis of highly complex nanoparticles with superior properties respect the currently approved products, there seems to be a gap to the application of these materials to fully exploit their enhanced capabilities. This is due, at least partly, to obstacles such as low yield and, most importantly, the robustness and reproducibility of the synthesis method. Hence, detailed studies on nanoparticle formation mechanisms are essential to guarantee that successful syntheses are not a “one-off” but can be performed and reproduced at various research institutions at small to large scales. This work presents such a detailed study, unravelling the growth mechanism of the co-precipitation of IONPs in solution with the aid of synchrotron X-Ray diffraction.

>Read more on the Elettra website

Image: TEM images of the nanoparticles formed after 30 s, 1, 2, 3, 4, 5, 7 and 10 min of reaction.

Analyzing the structural disorder of nanocrystals

Research applies unprecedented technique in Brazil for the investigation of crystalline nanoparticles

The development of faster and more efficient electronic devices, better catalysts for the chemical industry, alternative energy sources, and so many other technologies depends increasingly on the in-depth understanding of the behavior of materials at the nanometer scale.
The properties of particles on this scale may be completely different from the properties of the same material in its macroscopic version. In addition, nanoparticles of different sizes and shapes can have completely different characteristics, even though they are formed by the same material.
The possibility of regulating the optical and electrical properties of nanoparticles by controlling their composition, shapes and sizes opens the door to an immense variety of applications. In this context, nanocrystals – nanometric particles that have a crystalline structure – have attracted great interest.
A crystal is a type of solid whose atoms or molecules are arranged in a well-defined three-dimensional pattern that repeats itself in space on a regular basis. The optical and electrical properties of crystalline materials depend not only on the atoms or molecules that constitute them but also on the way they are distributed. Therefore, defects or impurities present during crystal formation cause a disorder in the crystal structure. The consequent modification in the electronic structure of the crystal can lead to changes in its properties.

>Read more on the Brazilian Light Source Laboratory website
Image: PDF analysis obtained from electron diffraction data for nanocrystals before (ZrNC-Benz) and after ligand exchange (ZrNC-OLA).
Credit: Reprinted with permission from J. Phys. Chem. Lett. 2019, 10, 7, 1471-1476. Copyright 2019 American Chemical Society.

Nanoscale sculpturing leads to unusual packing of nanocubes

Cube-shaped nanoparticles with thick shells of DNA assemble into a never-before-seen 3-D “zigzag” pattern that breaks orientational symmetry; understanding such nanoscale behavior is key to engineering new materials with desired organizations and properties.

From the ancient pyramids to modern buildings, various three-dimensional (3-D) structures have been formed by packing shaped objects together. At the macroscale, the shape of objects is fixed and thus dictates how they can be arranged. For example, bricks attached by mortar retain their elongated rectangular shape. But at the nanoscale, the shape of objects can be modified to some extent when they are coated with organic molecules, such as polymers, surfactants (surface-active agents), and DNA. These molecules essentially create a “soft” shell around otherwise “hard,” or rigid, nano-objects. When the nano-objects pack together, their original shape may not be entirely preserved because the shell is flexible—a kind of nanoscale sculpturing.

Now, a team of scientists from the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory and Columbia Engineering has shown that cube-shaped nanoparticles, or nanocubes, coated with single-stranded DNA chains assemble into an unusual “zigzag” arrangement that has never been observed before at the nanoscale or macroscale. Their discovery is reported in the May 17 online issue of Science Advances.

>Read more on the NSLS-II website

Image: Brookhaven Lab scientists Fang Lu (sitting), (left to right, standing) Oleg Gang, Kevin Yager, and Yugang Zhang in an electron microscopy lab at the Center for Functional Nanomaterials. The scientists used electron microscopes to visualize the structure of nanocubes coated with DNA.

A compass pointing West

Researchers at the Paul Scherrer Institute PSI and ETH Zurich have discovered a special phenomenon of magnetism in the nano range.

It enables magnets to be assembled in unusual configurations. This could be used to build computer memories and switches to increase the performance of microprocessors. The results of the work have now been published in the journal Science.
Magnets are characterized by the fact that they have a North pole and a South pole. If two common magnets are held close to each other, opposite poles attract and like poles repel each other. This is why magnetic needles, such as those found in a compass, align themselves in the Earth’s magnetic field so that we can use them to determine the cardinal directions North and South and, derived from this, East and West. In the world that we experience every day with our senses, this rule is correct. However, if you leave the macroscopic world and dive into depths of much smaller dimensions, this changes. Researchers at the Paul Scherrer Institute PSI and the ETH Zurich have now discovered a very special magnetic interaction at the level of nanoscopic structures made of magnetic layers only a few atoms thick.

>Read more on the Swiss Light Source at PSI website

Image: Zhaochu Luo, lead author of the study, in front of a so-called sputter deposition tool. In the apparatus the layers of platinum, cobalt and aluminium oxide are produced. Each layer is only a few nanometers thick. Credit: Paul Scherrer Institute/Mahir Dzambegovic

Unraveling plants resistance to drought

Research investigates the chemical nanostructure of water conducting vessels.

Plant cells are encased in a structure called the cell wall, composed mainly of cellulose and lignin. Among other functions, this wall gives structural stability to the cells and controls the entry of water, minerals and other substances. When they die, the cells leave behind their cell wall, forming different structures that support the plant giving rigidity to the stems and that facilitate the transport of substances from the roots to the leaves and vice versa. One such structure is the xylem: a continuous network of conduits about 100 micrometers in diameter that carries the water absorbed by the roots to the leaves.

When they lose water by transpiration, the leaves generate tension in the water column within the xylem. The pressure difference between the interior and exterior of the conduit causes the molecules to behave as links in a current: when a molecule of water evaporates, the rest of the “current” is pulled up.

>Read more on the Brazilian Synchrotron Light Laboratory at CNPEM website

Image: Schematic figure of the technique of infrared nanospectroscopy.

A deep dive into the imperfect world of 2D materials

Berkeley Lab-led team combines several nanoscale techniques to gain new insights on the effects of defects in a well-studied monolayer material

Nothing is perfect, or so the saying goes, and that’s not always a bad thing. In a study at the Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab), scientists learned how nanoscale defects can enhance the properties of an ultrathin, so-called 2D material. They combined a toolbox of techniques to home in on natural, nanoscale defects formed in the manufacture of tiny flakes of a monolayer material known as tungsten disulfide (WS2) and measured their electronic effects in detail not possible before. “Usually we say that defects are bad for a material,” said Christoph Kastl, a postdoctoral researcher at Berkeley Lab’s Molecular Foundry and the lead author of the study, published in the journal ACS Nano. “Here they provide functionality.”

Tungsten disulfide is a well-studied 2D material that, like other 2D materials of its kind, exhibits special properties because of its atomic thinness. It is particularly well-known for its efficiency in absorbing and emitting light, and it is a semiconductor.

>Read more on the Advanced Light Source website

Image: This image shows an illustration of the atomic structure of a 2D material called tungsten disulfide. Tungsten atoms are shown in blue and sulfur atoms are shown in yellow. The background image, taken by an electron microscope at Berkeley Lab’s Molecular Foundry, shows groupings of flakes of the material (dark gray) grown by a process called chemical vapor deposition on a titanium dioxide layer (light gray).
Credit: Katherine Cochrane/Berkeley Lab

Towards upscaling the production of graphene nanoribbons for electronics

Two-dimensional sheets of graphene in the form of ribbons a few tens of nanometers across have unique properties that are highly interesting for use in future electronics.

Researchers have now for the first time fully characterised nanoribbons grown in both the two possible configurations on the same wafer with a clear route towards upscaling the production.
Graphene in the form of nanoribbons show so called ballistic transport, which means that the material does not heat up when a current flow through it. This opens up an interesting path towards high speed, low power nanoelectronics. The nanoribbon form may also let graphene behave more like a semiconductor, which is the type of material found in transistors and diodes. The properties of graphene nanoribbons are closely related to the precise structure of the edges of the ribbon. Also, the symmetry of the graphene structure lets the edges take two different configurations, so called zigzag and armchair, depending on the direction of the long respective short edge of the ribbon.

See some video interviews and the entire article on the MAX IV website

Illuminating nanoparticle growth with X-rays

Ultrabright x-rays at NSLS-II reveal key details of catalyst growth for more efficient hydrogen fuel cells

Hydrogen fuel cells are a promising technology for producing clean and renewable energy, but the cost and activity of their cathode materials is a major challenge for commercialization. Many fuel cells require expensive platinum-based catalysts—substances that initiate and speed up chemical reactions—to help convert renewable fuels into electrical energy. To make hydrogen fuel cells commercially viable, scientists are searching for more affordable catalysts that provide the same efficiency as pure platinum.

“Like a battery, hydrogen fuel cells convert stored chemical energy into electricity. The difference is that you’re using a replenishable fuel so, in principle, that ‘battery’ would last forever,” said Adrian Hunt, a scientist at the National Synchrotron Light Source II (NSLS-II), a U.S. Department of Energy (DOE) Office of Science User Facility at DOE’s Brookhaven National Laboratory. “Finding a cheap and effective catalyst for hydrogen fuel cells is basically the holy grail for making this technology more feasible.”

>Read more on the NSLS-II website

Image: Brookhaven Lab scientists Mingyuan Ge, Iradwikanari Waluyo, and Adrian Hunt are pictured left to right at the IOS beamline, where they studied the growth pathway of an efficient catalyst for hydrogen fuel cells.

Extremely small magnetic nanostructures with invisibility cloak

Future data storage technology

In novel concepts of magnetic data storage, it is intended to send small magnetic bits back and forth in a chip structure, store them densely packed and read them out later. The magnetic stray field generates problems when trying to generate particularly tiny bits. Now, researchers at the Max Born Institute (MBI), the Massachusetts Institute of Technology (MIT) and DESY were able to put an “invisibility cloak” over the magnetic structures. In this fashion, the magnetic stray field can be reduced, allowing for small yet mobile bits. The results were published in Nature Nanotechnology.

For physicists, magnetism is intimately coupled to rotating motion of electrons in atoms. Orbiting around the atomic nucleus as well as around their own axis, electrons generate the magnetic moment of the atom. The magnetic stray field associated with that magnetic moment is the property we know from e.g. a bar magnet we use to fix notes on pinboard. It is also the magnetic stray field that is used to read the information from a magnetic hard disk drive. In today’s hard disks, a single magnetic bit has a size of about 15 x 45 nanometer, about 1.000.000.000.000 of those would fit on a stamp.

One vision for a novel concept to store data magnetically is to send the magnetic bits back and forth in a memory chip via current pulses, in order to store them at a suitable place in the chip and retrieve them later. Here, the magnetic stray field is a bit of a curse, as it prevents that the bits can be made smaller for even denser packing of the information. On the other hand, the magnetic moment underlying the stray field is required to be able to move the structures around.

>Read more on the PETRA III at DESY website

Credit: MIT, L. Caretta/M. Huang [Source]

Nano-opto-electronics with Soapstone

Research shows potential of combining mineral with graphene for the design of new devices.

The development of electronic devices in the nanometric scale depends on the search for materials that have appropriate characteristics, and that are also efficient and inexpensive. This is the case of graphene, a material formed by a single layer of carbon atoms obtained from graphite. Graphene is a conductor with excellent optical and electrical properties that can be easily altered by the incidence of electric fields or light.

In addition, several other interesting structural, electronic and optical properties can be obtained by combining graphene with other materials. These new properties arise due to changes in the electronic structure in the interface of different materials when they are brought into contact. In this scenario, the search for new materials and ways of combining them becomes a natural trend.

>Read more on the Brazilian Synchrotron Light Laboratory (LNLS) website

Image: DOI: 10.1021/acsphotonics.7b01017

Nanoparticles form supercrystals under pressure

Investigations at Diamond may lead to easier ways to synthesise nanoparticle supercrystals

Self-assembly and crystallisation of nanoparticles (NPs) is generally a complex process, based on the evaporation or precipitation of NP-building blocks. Obtaining high-quality supercrystals is slow, dependent on forming and maintaining homogenous crystallisation conditions. Recent studies have used applied pressure as a homogeneous method to induce various structural transformations and phase transitions in pre-ordered nanoparticle assemblies. Now, in work recently published in the Journal of Physical Chemistry Letters, a team of German researchers studying solutions of gold nanoparticles coated with poly(ethylene glycol)- (PEG-) based ligands has discovered that supercrystals can be induced to form rapidly within the whole suspension.

>Read more on the Diamond Light Source website

Figure: 2D SAXS patterns of PEG-coated gold nanoparticles (AuNP) with 2 M CsCl added at different pressures. Left: 1 bar; Middle: 4000 bar; Right: After pressure release at 1 bar. The scheme on top illustrates the structural assembly of the coated AuNPs at different pressures: At 1 bar, the particle ensemble is in an amorphous, liquid state. Upon reaching the crystallization pressure, face-centred cubic crystallites are formed by the AuNPs. After pressure release, the AuNPs return to the liquid state. 

A designed material untangles long-standing puzzle

This approach could lead to new materials with emergent physics and unique electronic properties, supporting broader research efforts to revolutionize modern electronics.

When atoms or molecules assemble to form bulk matter, new properties (such as conductivity and ferromagnetism) that didn’t exist in the constituent parts can emerge from the whole. Similarly, stacking atomically thin layers into nanostructures (heterostructures) can give rise to a rich variety of emergent phases not found in bulk materials.

Materials that exhibit emergent phenomena (“quantum materials”) often feature multiple phases with simultaneous phase transitions. A great deal of effort is currently being expended to disentangle such transitions, to discover what drives them and to ultimately harness them in new materials with desired functionalities. Most of these efforts have relied on external perturbations (light, pressure, etc.) to decouple the transitions. In this work, researchers found a way to do this intrinsically, through layer-by-layer design of stacking sequences with mismatched periodicities.

>Read more on the Advanced Light Source website

Image: (a) Rare-earth (RE) nickelates (RENiO3) host multiple types of entangled orderings. This illustration depicts a magnetic ordering (spin directions indicated by yellow arrows) and a charge ordering (a checkerboard of two nickel oxidation states, indicated by sphere size and color) in bulk RENiO3 (RE and O atoms omitted for clarity). 
Please find the entire image here.

Magnetization ratchet in cylindrical nanowires

A team of researchers from Materials Science Institute of Madrid (CSIC), University of Barcelona and ALBA Synchrotron reported on magnetization ratchet effect observed for the first time in cylindrical magnetic nanowires (magnetic cylinders with diameters of 120nm and lengths of over 20µm).

These nanowires are considered as building blocks for future 3D (vertical) electronic and information storage devices as well as for applications in biological sensing and medicine. The experiments have been carried out at the CIRCE beamline of the ALBA Synchrotron. The results are published in ACS Nano.

The magnetic ratchet effect, which represents a linear or rotary motion of domain walls in only one direction preventing it in the opposite one, originates in the asymmetric energy barrier or pinning sites. Up to now it has been achieved only in limited number of lithographically engineered planar nanostructures. The aim of the experiment was to design and prove the one-directional propagation of magnetic domain walls in cylindrical nanowires.

>Read more on the ALBA website

Image: (extract) Unidirectional propagation of magnetization as seen in micromagnetic simulations and XMCD-PEEM experiments. See entire image here.

Insulator metal transition at the nanoscale

An international team of researchers has been able to probe the insulator-conductor phase transition of materials at the nanoscale resolution. This is one of the first results of MaReS endstation of BOREAS beamline.

Controlling the flow of electrons within circuits is how electronic devices work. This is achieved through the appropriate choice of materials. Metals allow electrons to flow freely and insulators prevent conduction. In general, the electrical properties of a material are determined when the material is fabricated and cannot be changed afterwards without changing the material. However, there are materials that can exhibit metal or insulator behaviour depending on their temperature. Being able switch their properties, these materials could lead to a new generation of electronic devices.

Vanadium Dioxide (VO2) is one such material. It can switch from an insulating phase to a metallic phase just above room temperature, a feature exploited already for sensors. However, the reason why the properties of this material change so dramatically has been a matter of scientific debate for over 50 years.

One of the challenges in understanding why and how this switch occurs is due to a process called phase separation. The insulator-metal phase transition is similar to the ice to liquid transition in water. When ice melts, both liquid and solid water can coexist in separate regions. Similarly, in VO2, insulating and metallic regions of the material can be coexisting at the same time during the transition. But unlike water, where the different regions are often large enough to see with the naked eye, in VOthis separation occurs on the nanoscale and it is thus challenging to observe. As a result, it has been hard to know if the true properties of each phase, or the mixture of both phases, are being measured.

>Read more on the ALBA Synchrotron website

Image: (extract, original here) reconstructed holograms at the vanadium and oxygen edges (518, 529, and 530.5 eV) used to encode the intensities of the three color channels of an RGB (red, green, blue) image. At 330 K, an increase in intensity of the green channel, which probes the metallic rutile phase (R) through the d∥ state, is observed in small regions. As the sample is heated further, it becomes increasingly clear that the blue channel, which probes a intermediate insulating M2 phase, also changes but in different regions. At 334 K, three distinct regions can be observed corresponding to the insulating monoclinic M1, M2, and metallic R phases. As the temperature increases, the R phase dominates. The circular field of view is 2 μm in diameter. (taken from Vidas et al, Nanoletters, 2018).

Video presentation of thesis at NanoMAX

In April 2018, Karolis Parfeniukas (image) defended the first thesis to be fully completed at one of the new MAXIV beamlines called NanoMAX Here’s an interview with Karolis about this project making zone plates to improve focusing of the X-ray beam. Thesis from KTH university, Royal Institute of Technology in Stockholm. PLease watch here the presentation of his research at MAX IV Laboratory:

>Read more here about MAX IV Laboratory

Scientists find ordered magnetic patterns in disordered magnetic material

Study led by Berkeley Lab scientists relies on high-resolution microscopy techniques to confirm nanoscale magnetic features.

A team of scientists working at the Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) has confirmed a special property known as “chirality” – which potentially could be exploited to transmit and store data in a new way – in nanometers-thick samples of multilayer materials that have a disordered structure.

While most electronic devices rely on the flow of electrons’ charge, the scientific community is feverishly searching for new ways to revolutionize electronics by designing materials and methods to control other inherent electron traits, such as their orbits around atoms and their spin, which can be thought of as a compass needle tuned to face in different directions.

These properties, scientists hope, can enable faster, smaller, and more reliable data storage by facilitating spintronics – one facet of which is the use of spin current to manipulate domains and domain walls. Spintronics-driven devices could generate less heat and require less power than conventional devices.

In the latest study, detailed in the May 23 online edition of the journal Advanced Materials, scientists working at Berkeley Lab’s Molecular Foundry and Advanced Light Source (ALS) confirmed a chirality, or handedness, in the transition regions – called domain walls – between neighboring magnetic domains that have opposite spins.

Scientists hope to control chirality – analogous to right-handedness or left-handedness – to control magnetic domains and convey zeros and ones as in conventional computer memory.

>Read more on the Advanced Light Source website

Image: (extract, here original image)The top row shows electron phase, the second row shows magnetic induction, and the bottom row shows schematics for the simulated phase of different magnetic domain features in multilayer material samples. The first column is for a symmetric thin-film material and the second column is for an asymmetric thin film containing gadolinium and cobalt. The scale bars are 200 nanometers (billionths of a meter). The dashed lines indicate domain walls and the arrows indicate the chirality or “handedness.” The underlying images in the top two rows were producing using a technique at Berkeley Lab’s Molecular Foundry known as Lorentz microscopy.
Credit: Berkeley Lab