To gild sculptures in the late Middle Ages, artists often applied ultra-thin gold foil supported by a silver base layer. For the first time, scientists at the Paul Scherrer Institute PSI have managed to produce nanoscale 3D images of this material, known as Zwischgold. The pictures show this was a highly sophisticated mediaeval production technique and demonstrate why restoring such precious gilded artefacts is so difficult.
The samples examined at the Swiss Light Source SLS using one of the most advanced microscopy methods were unusual even for the highly experienced PSI team: minute samples of materials taken from an altar and wooden statues originating from the fifteenth century. The altar is thought to have been made around 1420 in Southern Germany and stood for a long time in a mountain chapel on Alp Leiggern in the Swiss canton of Valais. Today it is on display at the Swiss National Museum (Landesmuseum Zürich). In the middle you can see Mary cradling Baby Jesus. The material sample was taken from a fold in the Virgin Mary’s robe. The tiny samples from the other two mediaeval structures were supplied by Basel Historical Museum.
The material was used to gild the sacred figures. It is not actually gold leaf, but a special double-sided foil of gold and silver where the gold can be ultra-thin because it is supported by the silver base. This material, known as Zwischgold (part-gold) was significantly cheaper than using pure gold leaf. “Although Zwischgold was frequently used in the Middle Ages, very little was known about this material up to now,” says PSI physicist Benjamin Watts: “So we wanted to investigate the samples using 3D technology which can visualise extremely fine details.” Although other microscopy techniques had been used previously to examine Zwischgold, they only provided a 2D cross-section through the material. In other words, it was only possible to view the surface of the cut segment, rather than looking inside the material. The scientists were also worried that cutting through it may have changed the structure of the sample. The advanced microscopy imaging method used today, ptychographic tomography, provides a 3D image of Zwischgold’s exact composition for the first time.
Read more on the PSI website
Image: The altar examined is thought to have been made around 1420 in Southern Germany and for a long time stood in a mountain chapel on Alp Leiggern in the Swiss canton of Valais. Today it is on display at the Swiss National Museum (Landesmuseum Zürich).
Credit: Swiss National Museum, Landesmuseum Zürich