ESRF celebrates 30 years of science, 30 years of international collaboration

The ESRF celebrates its 30th anniversary in the presence of the representatives of its 22 partner countries. This event looks back at ESRF’s scientific accomplishments but also on the role that the ESRF has played in fostering peaceful cross-border collaboration in Europe and beyond.

“Congratulations on 30 years of success; here is to 30 more to come,” said Carlos Moedas, European Commissioner for Research, Science and Innovation, in a video message.

“ESRF is a shining example of what can be achieved when people of different nationalities and cultures come together to pursue a common goal, to push back the frontiers of science,” said ESRF Director General Francesco Sette. “In drawing up the ESRF Convention, back in 1988, the ESRF’s founding fathers established a unique model for scientific and technological excellence. Today, with 22 partner countries, and by bringing together scientists from all over the world, the ESRF continues to demonstrate how science unites nations and contributes to addressing complex global challenges facing our society.”

2018 holds a particular significance for the ESRF as the facility celebrates its 30th anniversary. In 1988, 11 countries joined forces to create the first third-generation synchrotron light source: a dream became a reality. Thirty years later, the ESRF has broken records for the brilliance and stability of its X-ray beams, for its scientific output (over 32 000 publications, i.e., around 2 000 publications per year during the last ten years, and four Nobel prize laureates), and for the strength of its community of users (about 10 000 scientific visits per year with users from 50 different countries).

>Read more on the European Synchrotron (ESRF) website

 

From Pakistan to Barcelona, from scientists to friends

Shamila Imtiaz and Sidra Ibadat happily describe their experience during their research internship at ALBA within the framework of the Open Sesame European project.

Shamila Imtiaz (31 years old, PhD candidate and Chemistry junior scientist at PINSTECH Islamabad) and Sidra Ibadat (25 years old, MS Physics Student at the International Islamic University Islamabad) happily describe their experience during their research internship at ALBA. They come from Pakistan and have been granted by the H2020 Open Sesame project to spend 8 weeks at our facility in order to widen their expertise in synchrotron-based Fourier Transform Infrared Microspectroscopy SR-FTIRM at the infrared beamline MIRAS. For both of them, this is their first experience in Europe and, apart from their scientific activity, they are enjoying their walks, their talks and taking care of Shamila’s 9-month old baby. Additionally, ALBA is “proud to help in the development of the scientific careers of young mothers here and elsewhere”, says Miguel Ángel García Aranda, ALBA Scientific Director

“The situation in Pakistan has greatly changed in the past years, there are more women than men in science studies but it’s not easy to find funding opportunities to continue with the studies”, says Sidra. “The Open Sesame project has been a great opportunity for us for visiting and seeing how a synchrotron light source works and bring back all this knowledge to our country”, according to Shamila. “Having access to more sophisticated tools that those in Pakistan can boost our research projects”, continues Sidra.

>Read more on the ALBA website

HZB builds undulator for SESAME in Jordan

The Helmholtz-Zentrum Berlin is building an APPLE II undulator for the SESAME synchrotron light source in Jordan. The undulator will be used at the Helmholtz SESAME beamline (HESEB) that will be set up there by five Helmholtz Centres. The Helmholtz Association is investing 3.5 million euros in this project coordinated by DESY.
SESAME stands for “Synchrotron Light for Experimental Science and Applications in the Middle East” and provides brilliant X-ray light for research purposes. The third-generation synchrotron radiation source became operational in 2017. Egypt, Iran, Israel, Jordan, Pakistan, the Palestinian Authority, Turkey, and Cyprus are cooperating on this unique project to provide scientists from the Middle East with access to one of the most versatile tools for research.

New beamline for soft x-rays

Thus far, SESAME has four beamlines and will now receive a fifth meant to generate “soft” X-ray light in the energy range between 70 eV and 1800 eV. This X-ray light is particularly suitable for investigating surfaces and interfaces of various materials, for observing certain chemical and electronic processes, and for non-destructive analysis of cultural artefacts. The new beamline will be constructed as the Helmholtz SESAME Beamline (HESEB) by the Helmholtz Centres DESY (coordinating Centre), Forschungszentrum Jülich, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Helmholtz-Zentrum Berlin (HZB) as well as the Karlsruhe Institute of Technology (KIT).

>Read more on the Bessy II at HZB website

Image: The APPLE II UE56 double undulator generates brilliant light with variable polarization.
Credit: HZB

LEAPS holds its first plenary meeting

Synchrotron radiation source SESAME welcomed as associated partner

On 12 and 13 November, the League of European Accelerator-based Photon Sources (LEAPS), the association of European research lightsources, met at DESY for its first plenary meeting. More than 150 scientists from the 16 accelerator-based lightsources in Europe, which are members of LEAPS, travelled to Hamburg to do so. Among them were the directors of all institutions, representatives of eight national science ministries and research funding agencies as well as Philippe Froissard from the European Commission.
“The League of European Accelerator-based Photon Sources has made great progress since its foundation a year ago, and I am convinced that this is the way to make our science with European lightsources shine even brighter in the future,” said Helmut Dosch, Chairperson of LEAPS, who opened the meeting together with LEAPS Vice-Chairperson Caterina Biscari from the Spanish synchrotron radiation source ALBA. The LEAPS consortium represents the interests of more than 25 000 users in total.
>Read more on the DESY website
and another article on the ALBA website. Please find here all news about the LEAPS initiative.

SESAME becomes the first associate of LEAPS

At its first Plenary Meeting that is being held at DESY on 12-14 November, the Members of LEAPS (League of European Accelerator-Based Photon Sources) unanimously decided to grant SESAME Associate status.

SESAME thus becomes the first Associate of LEAPS.

On signing the Declaration of Association to the LEAPS Consortium with Helmut Dosch, Chair of LEAPS and Chair of the DESY Board of Directors, Rolf Heuer, President of the SESAME Council, said that “it is a great honour for SESAME to be the first Associate of LEAPS; the scientific and technical development of SESAME and visibility of the Centre will greatly benefit from this association”.

>Read more on the SESAME website

Image: Schematic overview from SESAME, find more here.

Acid-base equilibria: not exactly like you remember in chemistry class

Work published in the Royal Society of Chemistry with the support of the Helmholtz Association through the Center for Free-Electron Laser Science at DESY, MAX IV Laboratory, Lund University, Sweden,  European Research Council (ERC) under the European Union’s Horizon 2020 and the Academy of Finland.

Remember doing titrations in chemistry class? Adding acid drop-by-drop to the beaker and the moment you took your eye off it the solution completely changed colour.
We learned in chemistry that by doing this titration, we were actually affecting an important equilibrium in the beaker between acids and bases. This equilibrium was first described at the turn of the 20th century by American biochemist Lawrence Henderson and modified by Karl Hasselbalch giving us the Henderson-Hasselbalch equation. The discovery and subsequent study of acids and bases using this equation has led to the discovery of many important phenomena in the natural world from as how cells function to how materials are formed.

However, after years of study, an idea arose that questioned the validity of the Henderson-Hasselbalch equation, what happens at the surface? If you have a beaker filled with a dilute acid, what happens at the very top atomic layer? The top layer of a liquid in a beaker is special for many reasons, but if you’re a dissolved molecule, it means that you’re no longer surrounded by water on all sides. For hydrophobic molecules, this means that it is favourable to be at the surface. With this in mind, the scientists took another look at the Henderson-Hasselbalch equilibrium equation and thought that it couldn’t work at the surface. Many studies have measured indicator chemical species, and determined that the Henderson-Hasselbalch equation does not seem to apply at the surface, and concluded that the concentration of hydronium or hydroxide ions, which determines the acidity/basicity, is different at the air-liquid interface than in the bulk.

>Read more on the MAXIV Laboratory website

 

 

Steering the outcome of photoionization in a molecule

An important step towards the understanding and control of photoinduced fragmentation processes in molecules has been achieved in an experiment on the H2 molecule taking advantage of the unique properties of the FERMI free-electron laser source in the vacuum ultraviolet (VUV) photon energy range.
Molecular dissociation, i.e., the breaking of a chemical bond, is governed by the coupling of electronic and nuclear motion and, once understood and controlled in large systems, e.g., by utilizing ultrashort light pulses, has the potential to impact tremendously photochemical and biochemical applications. A team of both experimentalists and theoreticians from France (CNRS, Université Paris-Sud, Université de Bordeaux), Spain (Universidad Autónoma de Madrid), Germany (European XFEL), and Italy (Elettra-Sincrotrone Trieste) has demonstrated that the outcome of dissociative (DI) and nondissociative (NDI) photoionization in the simplest of all molecules, H2, can be controlled exploiting nonlinear two-photon ionization with intense femtosecond pulses in the VUV.
The FERMI seeded free-electron laser is currently the only light source worldwide that provides external users access to bright femtosecond pulses at wavelengths in the VUV up to 100 nm, the energy regime required for studying nonlinear two-photon single-ionization in H2. The high spectral resolution and precise tunability of the 100-fs pulses provided by FERMI made it possible to selectively excite single vibrational levels in the neutral intermediate B state of H2 (blue line in Fig. 1). Absorption of a second VUV photon then leads to NDI or DI into the ionic H2+ ground state (green in Fig. 1) or to DI into the first excited H2+2p continuum (orange in Fig. 1). In single-photon single-ionization of H2, the yield of DI is very low – less than 2%. By contrast, recent ab initiocalculations suggest that the ratio of DI/NDI can be increased significantly in resonance-enhanced two-photon ionization and that it can be controlled by varying the pulse duration between 2 and 10 fs.

>Read more on the Elettra website

Image: (a) Schematic of resonant two-photon ionization viathe B intermediate state (12.51 eV). The grey shaded area shows the Franck-Condon region for one-photon absorption from the H2electronic ground state. The dashed purple arrows visualize the range for the absorption of the second FEL photon. The green (red) horizontal line shows the ionization threshold at 15.43 eV (dissociation limit at 18.08 eV). (b) The experimental photoelectron spectrum shows a clear separation of electrons correlated to NDI and DI. For DI, it is close to the prediction of the Condon-reflection approximation, i.e., the projection of the vibrational wavefunction onto the dissociative 2p continuum state. The infinite-time limit calculation (grey line for the convolution of the contributions from the two first ionization continua) reproduces the main features of the spectrum. The differences between experiment and calculation indicates that at FERMI a timescale between ultrafast dynamics and steady-state excitation is probed.

Research on ancient teeth reveals complexity of human evolution

Fossil records enable a detailed reconstruction of our planet’s history and of the evolution of our species. In particular, teeth are a sort of biological archive that record in their structures (enamel, dentine and pulp chamber) the different phases of the human evolution. An international team of researchers led by Clément Zanolli from the Université Toulouse III Paul Sabatier (France) has characterized human dental remains from Fontana Ranuccio (Latium) and Visogliano (Friuli-Venezia Giulia), Italy through a comparative high-resolution endostructural analysis based on microfocus X-ray microtomography (mCT) scanning and detailed morphological analyses. We examined the shape and arrangement of tooth tissues (see Fig. 1) and compared them with teeth of other human species (see Fig. 2).

With an age of around 450,000 years before present, the analysed dental remains from the sites of Fontana Ranuccio, located 50 km south-east of Rome, and Visogliano, located 18 km north-west of Trieste, are part of a very short list of fossil human remains from Middle Pleistocene Europe and are among the oldest human remains on the Italian Peninsula.
From the data obtained through X-ray μ-CT measurements performed at the TomoLab station of Elettra and at the Multidisciplinary Laboratory of the ‘Abdus Salam’ International Centre for Theoretical Physics in Trieste (Italy), we found that the teeth of both sites share similarities with Neanderthals but they are distinct from modern humans. This study adds to an emerging picture of complex human evolution in Middle Pleistocene Eurasia.  The investigated fossil teeth show that Neanderthal dental features had evolved by around 450,000 years ago.

>Read more on the Elettra Sincrotrone Trieste website

Image: Volume rendering of the Fontana Ranuccio (FR1R and FR2) and Visogliano (Vis. 1-Vis. 6) tooth specimens. The enamel is represented in blue while the dentine in yellow. All specimens were imaged by X-ray μCT at the Tomolab station of Elettra and at the Multidisciplinary Laboratory of the ICTP.     
Credit:  doi: 10.1371/journal.pone.0189773

Molluscs use thermodynamics to create complex morphologies with exceptional properties

An international team has found how some molluscs create their complex structures.

Their work provides new tools for novel bioinspired and biomimetic bottom-up material design.
Nature serves as a source of inspiration for scientists and engineers thanks to the complex material architectures that make up some living organisms. These materials carry out essential functions, ranging from structural support and mechanical strength, to optical, magnetic or sensing capabilities. One example of this are molluscan shells, made of mineralized tissues organised in mineral-organic hierarchical functional architectures.

Molluscs appeared more than 500 million years ago, and they have developed hard and stiff mineralised outer shells for structural support and protection against predation. Their shells consist of mineral-organic composite structures made of calcium carbonates, mostly calcite and aragonite. The different shells exhibit a large variety of intricate three-dimensional assemblies with superior mechanical properties.

>Read more on the European Synchrotron website

Italy now European XFEL shareholder

On Friday 5 October, the Italian research organisations INFN and CNR officially became shareholders of European XFEL GmbH.

The National Institute for Nuclear Physics (INFN) and the National Research Council (CNR) together now own 2.9% of the company’s shares; one third going to INFN and two thirds to CNR. Italy has been a European XFEL partner country since the foundation of the company. With the acquisition of the shares, INFN and CNR – both designated by Italy as Italian shareholders – now also have full voting rights in the company’s supreme organ, the European XFEL Council. The Italian share of 2.9% in the company corresponds to the Italian contributions to the total European XFEL construction and operation budgets, making Italy the fourth largest funders following Germany, Russia, and France.

>Read more on the European XFEL website

Image: Representatives from DESY, European XFEL, INFN and CNR celebrate after the signing of the accession documents today. From left to right: Veronica Buccheri, INFN; Nicole Elleuche, European XFEL; Roberto Pellegrini, INFN; Rosario Spinella, CNR; Bruno Quarta, INFN; Reinhard Brinkmann, DESY; Robert Feidenhans’l, European XFEL; Christian Harringa, DESY.
Credit: European XFEL

Diamond shines its light on moon rocks

Nearly 50 years after our first steps on the Moon, rock samples from the Apollo missions still have a lot to tell us about lunar formation, and Earth’s volcanoes.

An international collaboration involving scientists in Tenerife, the US and the UK, are using Diamond, the UK’s national synchrotron light source, to investigate Moon rocks recovered during the Apollo Missions in a brand new way.
Dr. Matt Pankhurst of Instituto Volcanológico de Canarias and NASA lunar principle investigator explains: “We have used a new imaging technique developed at Diamond to carry out 3D mapping of olivine – a common green mineral found in the Earth’s sub-surface and in these Moon rock samples. These maps will be used to improve understanding of the Moon’s ancient volcanic systems and help to understand active geological processes here on Earth.
With this new technique, our team may be able to recover from these Moon rock samples information such as what the patterns of magma flow within the volcanic system were, what the magma storage duration was like, and potentially even identify eruption triggers. The data will be analysed using state-of-the-art diffusion modelling which will establish the history of individual crystals.”

>Read more on the Diamond Light Source website

Image:
Dr Matt Pankhurst studies one of the moon rock samples from the Apollo 12 & 15 missions at Diamond Light Source

Boosting the efficiency of silicon solar cells

The efficiency of a solar cell is one of its most important parameters.

It indicates what percentage of the solar energy radiated into the cell is converted into electrical energy. The theoretical limit for silicon solar cells is 29.3 percent due to physical material properties. In the journal Materials Horizons, researchers from Helmholtz-Zentrum Berlin (HZB) and international colleagues describe how this limit can be abolished. The trick: they incorporate layers of organic molecules into the solar cell. These layers utilise a quantum mechanical process known as singlet exciton fission to split certain energetic light (green and blue photons) in such a way that the electrical current of the solar cell can double in that energy range.

The principle of a solar cell is simple: per incident light particle (photon) a pair of charge carriers (exciton) consisting of a negative and a positive charge carrier (electron and hole) is generated. These two opposite charges can move freely in the semiconductor. When they reach the charge-selective electrical contacts, one only allows positive charges to pass through, the other only negative charges. A direct electrical current is therefore generated, which can be used by an external consumer.

>Read more on the BESSY II at Helmholtz-Zentrum Berlin website

Picture: Darstellung des Prinzips einer Silizium-Multiplikatorsolarzelle mit organischen Kristallen
Credit: M. Künsting/HZB

How did humans live 5000 years ago?

Researchers from the Cyprus Institute, in collaboration with the Iranian Center of Archaeological Research, have worked around the clock for a week on ID16A to discover more about the lifestyle of our ancestors.

How did people live 5000 years ago? What did they eat? What can we learn of their health? Were they exposed to contaminants? To answer these questions with various techniques researchers first need to understand more about the preservation state of ancient human hair. In order to do this, a team from Cyprus Institute is  scanning hair remains found within burials at the ancient site of Shahr-I-Sokhta, in Iran.
In this urban settlement, at a crossroads of important ancient trade routes that later became part of the Silk Road, there was busy commercial and manufacturing activity around metal and precious materials as evidenced by the  artifacts found onsite during archaeological excavations. Archaeologists have also found remains of the inhabitants of the city dating to the 3rd millennium BC, and their state of preservation is remarkable. “The climate in this area is very arid and hot, and this has led to preservation of body tissues not often found with human skeletons, including hair”, explains Kirsi Lorentz, assistant professor at the Cyprus Institute.

>Read more on the European Synchrotron (ESRF) website

Image: Aerial view of the Shahr-I-Sokhta site, in Iran.
Credit: Media Rahmani

Nanotechnology in oil exploration

Research investigates use of nanoparticles for advanced oil recovery.

Brazil is a pioneering country in the exploration of oil in deep waters and a great quantity of this fossil fuel is stored in the porous space of carbonate rocks, especially in the pre-salt layer. These rocks are very heterogeneous and have complex pore systems, bringing great challenges to the extraction of oil and gas.
After drilling an oil or gas reservoir, the natural pressure inside it causes the contents to flow naturally to the surface where the fluid is collected and directed to a tanker. However, a few years after the opening of the well, the amount of oil extracted daily tends to decrease due to the drop in internal well pressure.

One of the ways to continue the exploration is by the injecting water or gas into the well, which helps in the transport of fluids and increases oil production, allowing it to be explored for several years. A more efficient way is, however, through the injection of surfactants, which facilitate the remobilization of oil, even in regions where water and gas have no further effect.
Recently, Tannaz Pak and collaborators from Brazil and the United Kingdom investigated [1] the use of nanoparticles to improve the advanced recovery of oil in carbonate rocks. By means of time-resolved X-ray microtomography, the research showed for the first time how oil droplets, retained in the pores of carbonate rocks, change shape when interacting with silica nanoparticles suspended in water, making it again available for extraction.

>Read more on the Brazilian Synchrotron Light Laboratory website

Image Credit: Geraldo Falcão / Banco de Imagens Petrobras

X-rays uncover a hidden property that leads to failure in a lithium-ion battery material

Experiments at SLAC and Berkeley Lab uproot long-held assumptions and will inform future battery design.

Over the past three decades, lithium-ion batteries, rechargeable batteries that move lithium ions back and forth to charge and discharge, have enabled smaller devices that juice up faster and last longer.
Now, X-ray experiments at the Department of Energy’s SLAC National Accelerator Laboratory and Lawrence Berkeley National Laboratory have revealed that the pathways lithium ions take through a common battery material are more complex than previously thought. The results correct more than two decades worth of assumptions about the material and will help improve battery design, potentially leading to a new generation of lithium-ion batteries.

An international team of researchers, led by William Chueh, a faculty scientist at SLAC’s Stanford Institute for Materials & Energy Sciences and a Stanford materials science professor, published these findings today in Nature Materials.
“Before, it was kind of like a black box,” said Martin Bazant, a professor at the Massachusetts Institute of Technology and another leader of the study. “You could see that the material worked pretty well and certain additives seemed to help, but you couldn’t tell exactly where the lithium ions go in every step of the process. You could only try to develop a theory and work backwards from measurements. With new instruments and measurement techniques, we’re starting to have a more rigorous scientific understanding of how these things actually work.”

>Read more on the SLAC website

Image: When lithium ions flow into the battery’s solid electrode – illustrated here in hexagonal slices – the lithium can rearrange itself, causing the ions to clump together into hot spots that end up shortening the battery lifetime.
Credit: Stanford University/3Dgraphic

X-rays reveal L-shape of scaffolding protein

Structural biologists discover unexpected results at PETRA III at DESY in Germany.

An investigation at DESY’s X-ray light source PETRA III has revealed a surprising shape of an important scaffolding protein for biological cells. The scaffolding protein PDZK1 is comprised of four so-called PDZ domains, three linkers and a C-terminal tail. While bioinformatics tools had suggested that PDZK1’s PDZ domains and linkers would behave like beads on a string moving around in a highly flexible manner, the X-ray experiments showed that PDZK1 has a relatively defined L-shaped conformation with only moderate flexibility. The team led by Christian Löw from the Centre for Structural Systems Biology CSSB at DESY and Dmitri Svergun from the Hamburg branch of the European Molecular Biology Laboratory EMBL report their results in the journal Structure.

Similar to metal scaffolding which provides construction workers with access points to a building, scaffolding proteins mediate interactions between proteins situated on the membrane of the human cell. While the molecular structure of each of PDZK1’s four individual PDZ domains has been solved using X-ray crystallography and NMR spectroscopy, the overall arrangement of the domains in the protein as well as their interactions was not yet understood.

>Read more on the PETRA III at DESY website

Image: Artistic shape interpretation of the scaffolding protein PDZK1. (Credit: Manon Boschard)tistic shape interpretation of the scaffolding protein PDZK1.
Credit: Manon Boschard