Potassium hunting on protein factories

Amazing insights into the location of elusive potassium ions on bacterial ribosomes

Groundbreaking research at the new long-wavelength macromolecular crystallography beamline (I23) at Diamond Light Source has for the first time demonstrated the location of potassium ions in bacterial ribosomes. Ribosomes are the protein factories of cells and although they are vital for life, little was known of the sites of metal ions that are crucial for their structure and function. The work recently published in Nature Communications showcases the fantastic applications of the I23 beamline and sheds light on the important role of potassium ions.

>Read more on the Diamond Light Source website

Image: (extract, full image here) 70S ribosome elongation complex (potassium atoms rendered as green spheres).

Taiwan-Germany experimental facility

National Synchrotron Radiation Research Center (NSRRC) announces that a new, state-of-the-art experimental facility – TPS 45A Submicron Soft X-ray Spectroscopy Beamline, is officially opened. As one of the beamlines at the Taiwan Photon Source (TPS), it delivers soft X-ray with high brilliance, low emittance, and ultra-high spectra resolution, which is ideal for studying and developing novel materials, such as superconducting, nano and magnetic materials.
The ceremony was addressed by Deputy Minister Yu-Chin Hsu of the Ministry of Science and Technology (MOST), Director Gwo-Huei Luo of NSRRC, Chien-Te Chen (member of the NSRRC Board of Director), Director Liu Hao Tjeng of Max Planck Institute for Chemical Physics of Solids (MPI CPfS), Vice President Chii-dong Ho of Tamkang University (TKU), Director Thomas Prinz of German Institute Taipei (DIT), and Peilan Tung of German Academic Exchange Service (DAAD).

>Read more on the NSRRC website

Image: Grand opening, ribbon cutting ceremony.

PREM students outfitting and upgrading CHESS x-ray beamlines

CHESS is fortunate to have three graduate students visiting from Puerto Rico. Supported by the NSF-PREM CiE2M – the Center for Interfacial Electrochemistry of Energy Materials – a partnership of The University of Puerto Rico, Rio PiedrasCampus (UPRRP), Universidad Metropolitana (UMET) and Universidad del Turabo (UT), and CHESS. 

This group forms an educational and innovative collaborative materials research effort to bring together a diverse and talented scientific community with experience and expertise in electro-chemistry, solid-state and inorganic chemistry, and synchrotron-based techniques to character energy materials in operando conditions at CHESS.  
The students have become an integral part of the team building out and commissioning new X-ray beamlines at the upgraded CHESS facility. New to them was learning good ultra-high vacuum (UHV) practices, using tools like torque wrenches to set vacuum seals, and using an RGA to find chemical contamination in optics boxes (“was really interesting!”). They have also studied the design of beamline components in each sector: apertures, safety bricks and power filters required to deliver X-rays to experimental hutches.
Melissa’s favorite activity was assembling components for Sector 4 X-ray monochromator. “It is like a puzzle to solve. There are many different plates and bolts and it is a real challenge to assemble based on the 3D CADmodel. There is a correct order to do things. It was fun to install water cooled components in the vacuum chamber,” she says.

>Read more on the CHESS website

Image: Brenda, Joesene, Melissa, and Alan Pauling (right) of CHESS proudly display their ultra-high vacuum assembly and installation in the Sector 2 cave of the new CHESS beamline. The students have worked hand-in-hand with CHESS staff to assemble, test and prepare the X-ray beampipes in three different sectors of CHESS. 

Coelacanth reveals new insights into skull evolution

A team of researchers, in conjunction with the National Museum of Natural History in Paris, presents the first observations of the development of the skull and brain in the living coelacanth Latimeria chalumnae.

The study, published in Nature, uses data from beamline ID19 and provides new insights into the biology of this iconic animal and the evolution of the vertebrate skull.
The coelacanth Latimeria is a marine fish closely related to tetrapods, four-limbed vertebrates including amphibians, mammals and reptiles. Coelacanths were thought to have been extinct for 70 million years, until the accidental capture of a living specimen by a South African fisherman in 1938. Eighty years after its discovery, Latimeria remains of scientific interest for understanding the origin of tetrapods and the evolution of their closest fossil relatives – the lobe-finned fishes.

>Read more on the European Synchrotron website

Image: Overall anterolateral view of the skull of the coelacanth foetus imaged on beamline ID19. The brain is in yellow.
Credit: H. Dutel et al.

Real-time characterisation of a new miniature-honeycomb fuel cell

A team from Imperial College has designed a miniature ceramic solid oxide fuel cell with excellent properties and together with scientists from the University College London, the company Finden and the ESRF, they characterised the cell as it works on beamline ID15A, confirming the great performances of the new device.

Ceramic fuel cells are considered as one of the most promising technologies for sustainable energy generation thanks to their interesting features, such as higher efficiency compared to conventional combustion-based power plants, high operating temperatures (600 – 1000 °C) that generate high-grade waste heat, and superior fuel flexibility that allows the direct utilization of hydrocarbons.

To date, ceramic fuel cells are used in a wide range of applications, including stationary power supply, combined heat and power system (CHP), auxiliary power units (APU), etc., and will continue receiving attention as shale gas and biofuels are becoming the premium fuel choices thanks to their low carbon footprint.

>Read more on the European Synchrotron website

Image: Micro-computed tomography and X-ray diffraction computed tomography images. XRD-CT maps of LSM (green), YSZ (red) and NiO (blue) have been overlaid on top of a micro-CT image collected at the same z position. The scale bar corresponds to 0.5 mm.
Credit: Tao Li.

Exotic properties of iridium compounds

Scientists at DESY’s X-ray source PETRA III and the London Centre for Nanotechnology, at University College London, have developed a new method for examining the astonishing properties of a special class of iridium oxides known as iridates. The team of principal author Pavel Alexeev, from the Dynamics Beamline P01 at PETRA III, is presenting the procedure in the journal Scientific Reports.

Many oxides belonging to certain groups of transition metals (chemical elements with an incomplete d electron shell) are known for their exotic magnetic and electronic properties. These can be attributed qualitatively to a range of interactions between the charge of the electrons, their magnetic moment, their localization within the crystals and their atomic orbitals. The relative strengths of the various interactions determine whether an oxide is magnetic, an insulator, an electrical conductor or even a superconductor. The so-called 4d and 5d transitions metals are particularly interesting in this respect.

The properties of many of these oxides can be specifically adjusted by applying external electric or magnetic fields, or exerting pressure on the material. This makes them interesting for numerous applications in micro- and nanoelectronics, for data storage and information processing. Such behaviour is particularly pronounced in the oxides of 5d transition metals, such as tantalum, tungsten, osmium and iridium. The oxides of iridium are especially remarkable because they lose their magnetisation when subjected to pressure, and even under normal conditions develop unexpected magnetic structures. Although some of their properties have been known for quite a while, efforts to explain this behaviour are still in their infancy. This makes it all the more important to develop methods that provide detailed insights into such materials.

A particularly suitable and extremely sensitive method of studying the electronic and magnetic properties of solids is nuclear resonant scattering (NRS) using synchrotron radiation. This method uses the nuclei of the atoms of certain isotopes as local probes for the material’s properties. In view of its numerous possible applications, specialised measuring stations have been set up for this purpose on the P01 beamline at PETRA III, which are used by many scientists from all over the world every year. Among other things, the method allows the orientation of atomic magnetic moments to be determined with great accuracy. NRS therefore complements other X-ray techniques and – in contrast to neutron techniques – makes it possible to study small samples, for example when used on samples subject to high pressure.

>Read more on the PETRA III at DESY website

Image: Samples of strontium-iridium-trioxid crystals.
Credit: University College London, James Vale/Emily Hunter

Funding research crucial to Africa: Energy and healthcare

The 27th March 2019 saw the official launch of START (Synchrotron Techniques for African Research and Technology), a £3.7M grant awarded to a consortium of researchers led by Diamond Light Source by the Science and Technology Facilities Council (STFC) to work with African scientists on START.

Africa does not yet have a synchrotron light source, but African researchers are keen to apply synchrotron techniques to their research problems. The START project will fund research posts in Africa and the UK with a focus on two key areas crucial to development in Africa – energy and healthcare . The scientific results that come out of the project will be valuable in themselves, and may also lead to commercial applications, but START will also promote the development of research capabilities within Africa, and international research collaborations.

For Diamond Principal Investigator, Prof. Chris Nicklin, this will be the most important result: It is an exciting prospect to work together on these challenging problems and this funding will enable us to form very strong links at all levels, in particular helping to train the next generation of researchers in nations that have not had the chance to access and exploit synchrotron based techniques in their research. The work will focus around the development needs of African countries, driven by the Africa-based investigators and the non-government organisations (NGOs) that we have on board.

>Read more on the Diamond Light Source website

Low background noise crucial for single particle imaging experiments

Model experiment brings scientists a step closer to SPI at European XFEL

Taking snapshots of single molecules with X-rays has long been a dream for many scientists. Such experiments have successfully been computationally modelled, but have never been practically demonstrated before.
In a model experiment carried out at the European Synchrotron Radiation Facility (ESRF), European XFEL scientists, together with international collaborators, have now come one step closer to successfully carrying out so-called single particle imaging experiments (SPI) at X-ray laser facilities such as European XFEL. In a paper published today in the journal from the International Union of Crystallography (IUCrJ), scientists demonstrate experimentally that, in principle, a 3D structure can indeed be obtained from many tens of thousands of very weak images, using X-rays with similar properties as produced at X-ray free-electron lasers such as European XFEL.

>Read more on the European XFEL website

Image: Reconstruction of the 3D electron density. (a) Reconstruction from the result derived by EMC. The electron density projected along an axis perpendicular to the drawing plane is shown here. (b) Reconstruction from the reference Fourier volume. Again, the projected electron density is shown. (c) 3D iso-surface rendering of the reconstructed electron density shown in panel (a). The threshold of the iso-surface has been set to 0.2, given a normalized density with values between 0 and 1. (d) Scanning electron micrograph from the original sample.
Image source

Scientists develop printable water sensor

X-ray investigation reveals functioning of highly versatile copper-based compound

A new, versatile plastic-composite sensor can detect tiny amounts of water. The 3d printable material, developed by a Spanish-Israeli team of scientists, is cheap, flexible and non-toxic and changes its colour from purple to blue in wet conditions. The researchers lead by Pilar Amo-Ochoa from the Autonomous University of Madrid (UAM) used DESY’s X-ray light source PETRA III to understand the structural changes within the material that are triggered by water and lead to the observed colour change. The development opens the door to the generation of a family of new 3D printable functional materials, as the scientists write in the journal Advanced Functional Materials (early online view).

>Read more on the PETRA III at DESY website

Image: When dried, for example in a water-free solvent, the sensor material turns purple.
Credit: UAM, Verónica García Vegas

Watching molecules in a light-triggered catalyst ring ‘like an ensemble of bells’

A better understanding of these systems will aid in developing next-generation energy technologies.

Photocatalysts ­– materials that trigger chemical reactions when hit by light – are important in a number of natural and industrial processes, from producing hydrogen for fuel to enabling photosynthesis.
Now an international team has used an X-ray laser at the Department of Energy’s SLAC National Accelerator Laboratory to get an incredibly detailed look at what happens to the structure of a model photocatalyst when it absorbs light.
The researchers used extremely fast laser pulses to watch the structure change and see the molecules vibrating, ringing “like an ensemble of bells,” says lead author Kristoffer Haldrup, a senior scientist at Technical University of Denmark (DTU). This study paves the way for deeper investigation into these processes, which could help in the design of better catalysts for splitting water into hydrogen and oxygen for next-generation energy technologies.
“If we can understand such processes, then we can apply that understanding to developing molecular systems that do tricks like that with very high efficiency,” Haldrup says.

>Read more on the Linac Coherent Light Source at SLAC website

Image: When photocatalyst molecules absorb light, they start vibrating in a coordinated way, like an ensemble of bells. Capturing this response is a critical step towards understanding how to design molecules for the efficient transformation of light energy to high-value chemicals.
Credit: Gregory Stewart/SLAC National Accelerator Laboratory

Water is more homogeneous than expected

In order to explain the known anomalies in water, some researchers assume that water consists of a mixture of two phases even under ambient conditions.

However, new X-ray spectroscopic analyses at BESSY II, ESRF and Swiss Light Source show that this is not the case. At room temperature and normal pressure, the water molecules form a fluctuating network with an average of 1.74 ± 2.1% donor and acceptor hydrogen bridge bonds per molecule each, allowing tetrahedral coordination between close neighbours.
Water at ambient conditions is the matrix of life and chemistry and behaves anomalously in many of its properties. Since Wilhelm Conrad Röntgen, two distinct separate phases have been argued to coexist in liquid water, competing with the other view of a single-phase liquid in a fluctuating hydrogen bonding network – the continuous distribution model. Over time, X-ray spectroscopic methods have repeatedly been interpreted in support of Röntgen’s postulate.

>Read more on the BESSY II at HZB website

Image: Water molecules are excited with X-ray light (blue). From the emitted light (purple) information on H-bonds can be obtained.
Credit: T. Splettstoesser/HZB

Superferromagnetism with electric-field induced strain

Data storage in today’s magnetic media is very energy consuming. Combination of novel materials and the coupling between their properties could reduce the energy needed to control magnetic memories thus contributing to a smaller carbon footprint of the IT sector. Now an international team led by HZB has observed at the HZB lightsource BESSY II a new phenomenon in iron nanograins: whereas normally the magnetic moments of the iron grains are disordered with respect each other at room temperature, this can be changed by applying an electric field: This field induces locally a strain on the system leading to the formation of a so-called superferromagnetic ordered state.
Switching magnetic domains in magnetic memories requires normally magnetic fields which are generated by electrical currents, hence requiring large amounts of electrical power. Now, teams from France, Spain and Germany have demonstrated the feasibility of another approach at the nanoscale: “We can induce magnetic order on a small region of our sample by employing a small electric field instead of using magnetic fields”, Dr. Sergio Valencia, HZB, points out.

>Read more on the Bessy II at HZB website

Image: The cones represents the magnetization of the nanoparticles. In the absence of electric field (strain-free state) the size and separation between particles leads to a random orientation of their magnetization, known as superparamagnetism
Credit: HZB

The ALBA synchrotron and Portugal boost their scientific collaboration

Science ministers from Portugal and Spain have visited ALBA, motivated by a collaboration agreement that promotes the Portuguese scientific community using the ALBA Synchrotron and also includes a training program for Portuguese postdoctoral researchers at ALBA.

On 11th February 2019, at the ALBA Synchrotron facility, an agreement has been signed to promote scientific collaboration between Spain and Portugal. The agreement has been signed by Caterina Biscari, director of ALBA, and Paulo Ferrão, president of the Fundação para a Ciência e a Tecnologia (FCT), under the auspices of Pedro Duque, minister of Science, Innovation and Universities of the Spanish Government, Manuel Heitor, minister of Science Technology and Higher Education of Portugal, and Àngels Chacón, regional minister of Business and Knowledge of the Catalan Government and current chair of the ALBA Rector Council.

The Portuguese scientific community has been using the ALBA Synchrotron since the beginning of its operation in 2012. Nowadays, Portugal is the 5th country that performs more experiments at ALBA, after Germany, France, Italy and the United Kingdom. They have obtained 60% of requested beamtime and have carried out experiments mainly in biology, protein crystallography and materials science.

>Read more on the ALBA website

Image: Images of the signing agreement ceremony, held at the ALBA Synchrotron. From left to right, Caterina Biscari, director of the ALBA Synchrotron, Àngels Chacón, regional minister of Business and Knowledge of the Catalan government, Pedro Duque, minister of Science, Innovation and Universities of the Spanish Government, Manuel Heitor, minister of Science Technology and Higher Education of Portugal, and Paulo Ferrão, president of the Fundação para a Ciência e a Tecnologia (FCT). In the last picture, members of the ALBA Synchrotron management, Joan Gómez Pallarés, General director of Research from the Catalan government, and Ramon Pascual, honorary president of ALBA.

Synchrotron light unveils new insights about amytrophic lateral sclerosis

Synergetic combination of different imaging and spectroscopic synchrotron techniques performed in ALBA and APS (USA) has discovered new aspects about astrocytes cells of this neurodegenerative disease.

Results, published in Analytical Chemistry, show significant differences between ALS and control astrocytes, including structural, chemical and macromolecular anomalies. Amyotrophic lateral sclerosis (ALS) is a fatal progressive neurodegenerative disease that causes the degeneration and death of neurons that control voluntary muscles. Still today the causes of this disease are unknown in 90% of the cases. However, some of them are caused by the mutation of sod1 gene. This gene encodes an enzyme (SOD1) that is involved in cellular protection against oxidative stress. Mutations dramatically alter the biochemical properties of SOD1, in particular its metal binding affinity and its anti-oxidative activity levels. But it is still unknown how these mutations block the normal cell function and lead to death of motor neurons. The ALBA Synchrotron, in collaboration with researchers from the University of Belgrade Pavle Andjus and Stefan Stamenković (who accomplished his PhD thesis using these results) and Vladan Lučić from Max Planck Institute of Biochemistry (Germany), has studied with synchrotron light techniques and classical biochemical laboratory approaches the cellular structural and biochemical changes of this gene mutation in a transgenic animal model of ALS. In particular, scientists have analysed astrocytes, one kind of brain cells that are key players in pathological processes of this disease.

>Read more on the ALBA website

Image: Researcher Tanja Dučić during the experiment performed at ALBA, at the MIRAS beamline.

A timely solution for the photosynthetic oxygen evolving clock

XFEL Hub collaboration reveals the intermediates of the photosynthetic water oxidation clock

A large international collaborative effort aided by the XFEL Hub at Diamond Light Source has generated the most detailed time-resolved studies to date of a key protein involved in photosynthesis. The pioneering work, recently published in Nature, shows how photosystem II harnesses light energy to produce oxygen – insights that could direct a next generation of photovoltaic cells. 
>Read more on the Diamond Light Source website

Image: this figure is issued from a video you can watch here.

ESRF celebrates 30 years of science, 30 years of international collaboration

The ESRF celebrates its 30th anniversary in the presence of the representatives of its 22 partner countries. This event looks back at ESRF’s scientific accomplishments but also on the role that the ESRF has played in fostering peaceful cross-border collaboration in Europe and beyond.

“Congratulations on 30 years of success; here is to 30 more to come,” said Carlos Moedas, European Commissioner for Research, Science and Innovation, in a video message.

“ESRF is a shining example of what can be achieved when people of different nationalities and cultures come together to pursue a common goal, to push back the frontiers of science,” said ESRF Director General Francesco Sette. “In drawing up the ESRF Convention, back in 1988, the ESRF’s founding fathers established a unique model for scientific and technological excellence. Today, with 22 partner countries, and by bringing together scientists from all over the world, the ESRF continues to demonstrate how science unites nations and contributes to addressing complex global challenges facing our society.”

2018 holds a particular significance for the ESRF as the facility celebrates its 30th anniversary. In 1988, 11 countries joined forces to create the first third-generation synchrotron light source: a dream became a reality. Thirty years later, the ESRF has broken records for the brilliance and stability of its X-ray beams, for its scientific output (over 32 000 publications, i.e., around 2 000 publications per year during the last ten years, and four Nobel prize laureates), and for the strength of its community of users (about 10 000 scientific visits per year with users from 50 different countries).

>Read more on the European Synchrotron (ESRF) website