Light-activated, single- ion catalyst breaks down carbon dioxide

X-ray studies reveal structural details that may point the way to designing better catalysts for converting pollutant gas into useful products

A team of scientists has discovered a single-site, visible-light-activated catalyst that converts carbon dioxide (CO2) into “building block” molecules that could be used for creating useful chemicals. The discovery opens the possibility of using sunlight to turn a greenhouse gas into hydrocarbon fuels.

The scientists used the National Synchrotron Light Source II, a U.S. Department of Energy (DOE) Office of Science user facility at Brookhaven National Laboratory, to uncover details of the efficient reaction, which used a single ion of cobalt to help lower the energy barrier for breaking down CO2. The team describes this single-site catalyst in a paper just published in the Journal of the American Chemical Society.

Converting CO2 into simpler parts—carbon monoxide (CO) and oxygen—has valuable real-world applications. “By breaking CO2, we can kill two birds with one stone—remove CO2 from the atmosphere and make building blocks for making fuel,” said Anatoly Frenkel, a chemist with a joint appointment at Brookhaven Lab and Stony Brook University. Frenkel led the effort to understand the activity of the catalyst, which was made by Gonghu Li, a physical chemist at the University of New Hampshire.

>Read more on the NSLS-II at Brookhaven National Laboratory website

Image: National Synchrotron Light Source II (NSLS-II) QAS beamline scientist Steven Ehrlich, Stony Brook University (SBU) graduate student Jiahao Huang, and Brookhaven Lab-SBU joint appointee Anatoly Frenkel at the QAS beamline at NSLS-II.

Transition metal complexes: mixed works better

A team at BESSY II has investigated how various iron-complex compounds process energy from incident light. They were able to show why certain compounds have the potential to convert light into electrical energy. 

The results are important for the development of organic solar cells. The study has now been published in the journal PCCP, and its illustration selected for the cover.
Transition-metal complexes – that is a cumbersome word for a class of molecules with important properties: An element from the group of transition metals sits in the centre. The outer electrons of the transition-metal atom are located in cloverleaf-like extended d-orbitals that can be easily influenced by external excitation. Some transition-metal complexes act as catalysts to accelerate certain chemical reactions, and others can even convert sunlight into electricity. The well-known dye solar cell developed by Michael Graetzel (EPFL) in the 1990s is based on a ruthenium complex.

Why not Iron?
However, it has not yet been possible to replace the rare and expensive transition metal ruthenium with a less expensive element, such as iron. This is astonishing, because the same number of electrons is found on extended outer d-orbitals of iron. However, excitation with light from the visible region does not release long-lived charge carriers in most of the iron complex compounds investigated so far.

>Read more on the Bessy II at HZB website

Image: The illustration shows a molecule with an iron atom at its centre, bound to 4 CN groups and a bipyridine molecule. The highest occupied iron orbital is shown as a green-red cloud. As soon as a cyan group is present, the outer iron orbitals are observed to delocalize so that electrons are also densely present around the nitrogen atoms.
Credit: T. Splettstoesser/HZB

The search for clean hydrogen fuel

The world is transitioning away from fossil fuels and hydrogen is poised to be the replacement.

Two things are needed if we are to make the transition to a low carbon, “hydrogen economy” they are clean and high yielding sources of hydrogen, as well as efficient means of producing and storing energy using hydrogen.

Hydrogen powered cars are the perfect case study for how a hydrogen-fuelled future would look. While they work and show a great deal of promise, the best examples of hydrogen being used in fuel require very clean sources of hydrogen. If the source of hydrogen is mixed with contaminants like carbon monoxide, the efficiency of the fuel goes down and causes downstream problems in the fuel cell.

A team from KTH led by Jonas Weissenrieder is visiting MAX IV this week to try and solve this exact problem, how can we generate clean hydrogen for fuel cells? The team is working on a process to catalyse the oxidation of carbon monoxide, which adversely affects fuel cell performance, to harmless carbon dioxide. The catalysis reaction must be selective, and not affect the hydrogen gas that could be oxidised to water which is not great for running car engines.

>Read more on the MAX IV Laboratory website

Single atoms break carbon’s strongest bond

Scientists discovered that single atoms of platinum can break the bond between carbon and fluorine, one of the strongest known chemical bonds.

An international team of scientists including researchers at Yale University and the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory have developed a new catalyst for breaking carbon-fluorine bonds, one of the strongest chemical bonds known. The discovery, published on Sept. 10 in ACS Catalysis, is a breakthrough for efforts in environmental remediation and chemical synthesis.

“We aimed to develop a technology that could degrade polyfluoroalkyl substances (PFAS), one of the most challenging pollutant remediation problems of the present day,” said Jaehong Kim, a professor in the department of chemical and environmental engineering at Yale University. “PFAS are widely detected all over the world, from Arctic biota to the human body, and concentrations in contaminated groundwater significantly exceed the regulatory limit in many areas. Currently, there are no energy-efficient methods to destroy these contaminants. Our collaboration with Brookhaven Lab aims to solve this problem by taking advantage of the unique properties of single atom catalysts.”

>Read more on the NSLS-II at Brookhaven National Laboratory website

Image: Brookhaven scientist Eli Stavitski is shown at NSLS-II’s Inner Shell Spectroscopy beamline, where researchers imaged the physical and chemical complexity of a single-atom catalyst that breaks carbon-fluorine bonds.

Highly efficient single-atom catalyst could help auto industry

A longer-lasting, higher-efficiency platinum catalyst has been developed by a Dalhousie University-led team, a result with major implications for the automobile industry.

Platinum catalysts help deactivate toxic exhaust gases from traditional car engines. Platinum is also used to help drive the chemical reactions that make zero-emissions hydrogen fuel cells possible – a technology that could transform automobiles as we know them.

The new catalyst combines gold and platinum to form what’s known as a single-atom catalyst, resulting in nearly 100-fold increases in efficiency over market platinum catalysts, says Peng Zhang, the Dalhousie professor who led this research.
Not only is efficiency improved at the outset, but it is maintained through the catalyst’s lifetime: normally, a platinum catalyst works less well over time as carbon monoxide molecules tightly bond to and block platinum from helping reactions along.
Improvements come from two properties: the single atom structure, which maximizes platinum’s active surface area, and the unique electronic properties that adding gold to create an alloy helps to achieve.

>Read more on the Canadian Light Source website

Image: The blue balls represent platinum atoms, surrounded by gold atoms (yellow). This structure maximizes the platinum catalyst’s efficiency.

Insight into catalysis through novel study of X-ray absorption spectroscopy

An international team has made a breakthrough at BESSY II.

For the first time, they succeeded in investigating electronic states of a transition metal in detail and drawing reliable conclusions on their catalytic effect from the data. These results are helpful for the development of future applications of catalytic transition-metal systems. The work has now been published in Chemical Science, the Open Access journal of the Royal Society of Chemistry.

Many important processes in nature depend on catalysts, which are atoms or molecules that facilitate a reaction, but emerge from it themselves unchanged. One example is photosynthesis in plants, which is only possible with the help of a protein complex comprising four manganese atom sites at its centre. Redox reactions, as they are referred to, often play a pivotal role in these types of processes. The reactants are reduced through uptake of electrons, or oxidized through their release. Catalytic redox processes in nature and industry often only succeed thanks to suitable catalysts, where transition metals supply an important function.

>Read more about on the BESSY II at HZB website

Image: Manganese compounds also play a role as catalysts in photosynthesis.
Credit: HZB

Fuel cells from plants

Using elements in plants to increase fuel cell efficiency while reducing costs

Researchers from the Institut National de la Recherche Scientifique, Québec are looking into reeds, tall wetlands plants, in order to make cheaper catalysts for high-performance fuel cells.

Due to rising global energy demands and the threat caused by environmental pollution, the search for new, clean sources of energy is on.

Unlike a battery, which stores electricity for later use, a fuel cell generates electricity from stored materials, or fuels.

Hydrogen-based fuel is a very clean fuel source that only produces water as a by-product, and could effectively replace fossil fuels. In order to make hydrogen fuel viable for everyday use, high-performance fuel cells are needed to convert the energy from the hydrogen into electricity.

Hydrogen fuel cells use platinum catalysts to drive energy conversion, but the platinum is expensive, accounting for almost half of a fuel cell’s total cost according to Qiliang Wei, a PhD student in Shuhui Sun’s group from the Institut National de la Recherche Scientifique – Énergie, Matériaux et Télécommunications who studies lower-cost alternatives to platinum catalysts.

>Read more on the Canadian Light Source website

An electrifying view on catalysis

The future of chemistry is ‘electrifying’: With increasing availability of cheap electrical energy from renewables, it will soon become possible to drive many chemical processes by electrical power. In this way, chemical products and fuels can be produced via sustainable routes, replacing current processes which are based on fossil fuels.

In most cases, such electrically driven reactions make use of so-called electrocatalysts, complex materials which are assembled from a large number of chemical componentAs. The electrocatalyst plays an essential role: It helps to run the chemical reaction while keeping the loss of energy minimal, thereby saving as much renewable energy as possible. In most cases, electrocatalysts are developed empirically and the chemical reactions at their interfaces are poorly understood. A better understanding of these processes is essential, however, for fast development of new electrocatalysts and for a directed improvement of their lifetime, one of the most important factors that currently limit their applicability.

>Read more on the Elettra website

Figure:  Introducing well-defined model electrocatalysts into the field of electrochemistry.

Putting CO2 to a good use

One of the biggest culprits of climate change is an overabundance of carbon dioxide in the atmosphere.

As the world tries to find solutions to reverse the problem, scientists from Swansea University have found a way of using CO2 to create ethylene, a key chemical precursor. They have used ID03 to test their hypotheses.

Carbon dioxide is essential for the survival of animals and plants. However, people are the biggest producers of CO2 emissions. The extensive use of fossil fuels such as coal, oil, or natural gas has created an excess of CO2 in the atmosphere, leading to global warming. Considerable research focuses on capturing and storing harmful carbon dioxide emissions. But an alternative to expensive long-term storage is to use the captured CO2 as a resource to make useful materials.

>Read more on the European Synchrotron wesbite

New class of single atoms catalysts for carbon nanotubes

They exhibit outstanding electrochemical reduction of CO2 to CO.

Experiments using X-rays on two beamlines at the Australian Synchrotron have helped characterise a new class of single atom catalysts (SACs) supported on carbon nanotubes that exhibit outstanding electrochemical reduction of CO2 to CO. A weight loading of 20 wt% for the new class, nickel single atom nitrogen doped carbon nanotubes (NiSA-N-CNTs), is believed to be the highest metal loading for SACs reported to date.

Single atoms of nickel, cobalt and iron were supported on nitrogen doped carbon nanotubes via a one-pot pyrolysis method and compared in the study.

A large international collaboration, led by Prof San Ping Jiang, Deputy Director of the Fuels and Energy Technology Institute at the Curtin University of Technology and associates from the Department of Chemical Engineering, have developed a new synthesis and development process for nitrogen-doped carbon nanotubes with a nickel ligand that demonstrate high catalytic activity.

The study was published in Advanced Materials and featured on the inside cover of the publication.

Dr Bernt Johannessen, instrument scientist on the X-ray absorption spectroscopy (XAS) beamline at the Australian Synchrotron was a co-author on the paper, which also included lead investigators from Curtin University of Technology and collaborators at the University of Western Australia, Institute of Metal Research (China), Oak Ridge National Laboratory (US), University of the Sunshine Coast, University of Queensland, Tsinghua University (China) and King Abdulaziz University (Saudi Arabia). Technical support and advice on the soft X-ray spectroscopy experiments was provided by Australian Synchrotron instrument scientist Dr Bruce Cowie.

>Read more on the Australian Synchrotron website

Image: extract of the cover of Advanced Materials.

Edges and corners increase efficiency of catalytic converters

X-rays reveal oxide islands on noble metal nanoparticles

Catalytic converters for cleaning exhaust emissions are more efficient when they use nanoparticles with many edges. This is one of the findings of a study carried out at DESY’s X-ray source PETRA III. A team of scientists from the DESY NanoLab watched live as noxious carbon monoxide (CO) was converted into common carbon dioxide (CO2) on the surface of noble metal nanoparticles like those used in catalytic converters of cars. The scientists are presenting their findings in the journal Physical Review Letters. Their results suggest that having a large number of edges increases the efficiency of catalytic reactions, as the different facets of the nanoparticles are often covered by growing islands of a nano oxide, finally rendering these facets inactive. At the edges, the oxide islands cannot connect, leaving active sites for the catalytic reaction and an efficient oxygen supply.
Catalytic converters usually use nanoparticles because these have a far greater surface area for a given amount of the material, on which the catalytic reaction can take place. For the study presented here, the scientists at DESY’s NanoLab grew platinum-rhodium nanoparticles on a substrate in such a way that virtually all the particles were aligned in the same direction and had the same shape of truncated octahedrons (octahedrons resemble double pyramids). The scientists then studied the catalytic properties of this sample under the typical working conditions of an automotive catalytic converter, with different gaseous compositions in a reaction chamber that was exposed to intense X-rays from PETRA III on the P09 beamline.

>Read more on the PETRA III at DESY website

Image: With increasing oxygen (red) concentration, an oxide sandwich forms on the surface of the metallic nanoparticles, inhibiting the desired reaction of carbon monoxide to carbon dioxide. At the edges, however, the oxide sandwich brakes up, leaving free active sites for catalysis. The more edges the nanoparticles posses, the more efficient will the catalytic converter work.
Credit: DESY, Lucid Berlin

Cleaner diesel emissions

More effective control of diesel nitrogen oxides through dosed addition of ammonia

In diesel engines, the burning of the fuel releases nitrogen oxides (NOx), which are harmful to human health. The automobile industry therefore developed a technique that reduces these emissions: Gaseous ammonia is added to the exhaust and, prompted by a catalyst, reacts with the nitrogen oxides to produce harmless nitrogen and water. At low temperatures, however, this process does not yet work optimally. Now, for the first time, scientists at the Paul Scherrer Institute PSI have found a remedy which is based on observations at the molecular level: The precise amount of added ammonia needs to be varied depending on the temperature. With this knowledge, manufacturers can improve the effectiveness of their catalytic converters for diesel vehicles. The researchers have now published their findings in the journal Nature Catalysis.

>Read more on the Paul Scherrer Institute website

Image: At the X-ray beam line: Davide Ferri (left) and Maarten Nachtegaal at the SLS experimental station where they studied diesel catalysis.
Photo: Paul Scherrer Institute/Markus Fischer

Converting CO2 into usable energy

Scientists show that single nickel atoms are an efficient, cost-effective catalyst for converting carbon dioxide into useful chemicals.

Imagine if carbon dioxide (CO2) could easily be converted into usable energy. Every time you breathe or drive a motor vehicle, you would produce a key ingredient for generating fuels. Like photosynthesis in plants, we could turn CO2 into molecules that are essential for day-to-day life. Now, scientists are one step closer.

Researchers at the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory are part of a scientific collaboration that has identified a new electrocatalyst that efficiently converts CO2 to carbon monoxide (CO), a highly energetic molecule. Their findings were published on Feb. 1 in Energy & Environmental Science.

“There are many ways to use CO,” said Eli Stavitski, a scientist at Brookhaven and an author on the paper. “You can react it with water to produce energy-rich hydrogen gas, or with hydrogen to produce useful chemicals, such as hydrocarbons or alcohols. If there were a sustainable, cost-efficient route to transform CO2 to CO, it would benefit society greatly.”

>Read more on the NSLS-II website

Image: Brookhaven scientists are pictured at NSLS-II beamline 8-ID, where they used ultra-bright x-ray light to “see” the chemical complexity of a new catalytic material. Pictured from left to right are Klaus Attenkofer, Dong Su, Sooyeon Hwang, and Eli Stavitski.

 

Atomic Flaws Create Surprising, High-Efficiency UV LED Materials

Subtle surface defects increase UV light emission in greener, more cost-effective LED and catalyst materials

Light-emitting diodes (LEDs) traditionally demand atomic perfection to optimize efficiency. On the nanoscale, where structures span just billionths of a meter, defects should be avoided at all costs—until now.

A team of scientists from the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory and Stony Brook University has discovered that subtle imperfections can dramatically increase the efficiency and ultraviolet (UV) light output of certain LED materials.

“The results are surprising and completely counterintuitive,” said Brookhaven Lab scientist Mingzhao Liu, the senior author on the study. “These almost imperceptible flaws, which turned out to be missing oxygen in the surface of zinc oxide nanowires, actually enhance performance. This revelation may inspire new nanomaterial designs far beyond LEDs that would otherwise have been reflexively dismissed.”

>Read more on the NSLS-II website

Image: The research team, front to back and left to right: Danhua Yan, Mingzhao Liu, Klaus Attenkoffer, Jiajie Cen, Dario Stacciola, Wenrui Zhang, Jerzy Sadowski, Eli Stavitski.

 

Structure and Catalytic Activity of Copper Nanoparticles

Research investigates the addition of ceria on the activity of catalysts for the water-gas shift reaction

Catalysts are substances that promote and accelerate chemical reactions without being consumed during the process and are widely used in industrial processes to produce various chemicals.

Catalysts based on copper nanoparticles dispersed in an oxide support benefit various reactions, such as the synthesis of methanol, the alcohol dehydrogenation, or the water gas shift (WGS) reaction which is one of the main processes for hydrogen production on an industrial scale. In this reaction, carbon monoxide reacts with water to produce carbon dioxide CO2 and hydrogen gas H2.

>Read more on the LNLS website

Figure 1: Correlation between the bond length of CuO and the catalyst turnover frequency (TOF) for the catalysts analyzed under WGS conditions with different proportions of copper and ceria.

 

2017’s Top-10 Discoveries and Scientific Achievements

Each year we compile a list of the biggest advances made by scientists, engineers, and those who support their work at the U.S. Department of Energy’s Brookhaven National Laboratory. From unraveling new details of the particle soup that filled the early universe to designing improvements for batteries, x-ray imaging, and even glass, this year’s selections span a spectrum of size scales and fields of science. Read on for a recap of what our passion for discovery has uncovered this year.  (…)

4. Low-Temperature Hydrogen Catalyst

Brookhaven chemists conducted essential studies to decipher the details of a new low-temperature catalyst for producing high-purity hydrogen gas. Developed by collaborators at Peking University, the catalyst operates at low temperature and pressure, and could be particularly useful in fuel-cell-powered cars. The Brookhaven team analyzed the catalyst as it was operating under industrial conditions using x-ray diffraction at the National Synchrotron Light Source (NSLS). These operando experiments revealed how the configuration of atoms changed under different operating conditions, including at different temperatures. The team then used those structural details to develop models and a theoretical framework to explain why the catalyst works so well, using computational resources at Brookhaven’s Center for Functional Nanomaterials (CFN).

 >Read more on the NSLS-II website