Ready, set, upgrade: Advanced Photon Source’s overhaul is underway

The facility is undergoing a comprehensive upgrade. Afterwards, the new APS will be able to generate X-ray beams 500 times brighter

Over the past three years, thousands of machine parts have been delivered to a low-slung, deceptively plain building in Lemont, Illinois. Once a warehouse, Building 981 is now a workshop — an extremely sophisticated one. Inside, a multitalented team assembles the building blocks of a complicated yet elegant machine, one that will sit at the heart of the Advanced Photon Source (APS), a U.S. Department of Energy (DOE) Office of Science user facility at DOE’s Argonne National Laboratory.

This new machine is part of a comprehensive upgrade to the facility, one that will set it at the forefront of global X-ray science for decades to come.

More than 5,500 scientists in a typical year use the APS for its intensely bright X-ray beams. Since it began operating in the mid-1990s, the APS has enabled advances in the fields of medicine, energy, climate, physics and more. The drug Paxlovid, devised to treat COVID-19, emerged from work at the APS. So did two Nobel Prizes in chemistry. These and many other breakthroughs have resulted from the APS’s ability to illuminate the otherwise invisible.

“The APS Upgrade opens up possibilities that could not be envisioned till now.” — Suresh Narayanan, Argonne Physicist

Now comes a moment more than a decade in the making. The APS’s powerful engines shut down on April 24, to make way for this new machine, called a storage ring, which circulates electrons in order to deliver X-ray beams up to 500 times brighter than the current one. That required first dismantling the existing storage ring, which spanned about two-thirds of a mile around. This phase of the project is now complete. The next phase will see the new components from Building 981 — preassembled into 200 modules weighing up to 50,000 pounds each — moved in this summer, when installation will begin in earnest.

Read more on the Argonne website

Image: Workers remove the final girder of the original APS. The new ring will be made up of 200 modules, each with precisely aligned electromagnets and complex vacuum and electrical systems

Credit: Argonne National Laboratory J.J Starr

Historic Advanced Photon Source magnet sees the light of day for the first time in 29 years

Historic Advanced Photon Source magnet sees the light of day for the first time in 29 years

Many of the Argonne employees who signed the magnet in 1994 still work for the laboratory, and their experiences building the original APS are vital to the ongoing effort to upgrade the facility.

On September 8, 1994, a group of people affixed their signatures in white ink onto a long red magnet. This was the final dipole magnet (of 81, including spares) built and tested for inclusion in a complex machine known as the Advanced Photon Source (APS), a U.S. Department of Energy (DOE) Office of Science user facility at DOE’s Argonne National Laboratory. By sheer chance, it also happened to be part of the final module of magnets to be installed in the APS facility.

Once signed, the magnet took its place next to its fellows and, for the next 28 years, it helped to steer particles called electrons circulating in a large storage ring. Those electrons were manipulated to create bright X-ray beams that thousands of scientists have used over the years to conduct thousands of experiments for the betterment of humankind.

“We expect the new machine to work a hundred times better than the old one. We learned many lessons building the APS, and the best part is that many of the people who learned those lessons are around now to help us build the new one.”  — Glenn Decker, APS Upgrade Project

Now the original APS is undergoing an $815 million upgrade, and the original APS storage ring is being removed to make way for a more modern one. And so, on May 23, the signed dipole magnet was taken back out of the storage ring facility, seeing the light of day for the first time in 29 years. As it emerged, it brought with it many memories, emerging fresh in the minds of those who were there in 1994, building a dream machine.

Read more on the Argonne website

Image: The final module of magnets to be installed in the Advanced Photon Source in September 1994, surrounded by several of the people who signed it at the time. The module was removed in May 2023 as part of the APS Upgrade Project.

Credit: Jason Creps, Argonne National Laboratory

Keeping track of the thousands of components needed to upgrade the APS

As the APS Upgrade’s supply chain coordinator, Aleksander Stankovik conducts detailed planning and forecasting to ensure all the materials are in place.

By Marguerite Huber

The Advanced Photon Source (APS) is shutting down for a year to undergo a complex and extensive upgrade. It’s a major investment in the future of science, as well as a significant investment in the APS, a U.S. Department of Energy (DOE) Office of Science user facility at DOE’s Argonne National Laboratory.

Behind the scenes of the upgrade, Aleksander Stankovik keeps track of the tens of thousands of components and materials needed for the project. As supply chain coordinator, Stankovik uses a component database, which includes approximately 30,000 entries, to manage all the inventory and assembly data.

“We cannot spend time searching for something,” explained Stankovik.” All the components we are using, you cannot go to a local store and buy them. You need to know at any given time where something is and how to get it. That’s a non-negotiable for this project.”

Stankovik joined Argonne and the APS in 2020 after spending years in logistics and supply chain management, helping to build energy facilities, chemical plants and refineries around the world as a government contractor. When the COVID-19 pandemic struck, a project he was working on was put on hold and Stankovik looked for another position. He was inspired by the challenge of the APS Upgrade.

“I knew that this was a different industry, but I was confident that my knowledge and experience would be of great value to the project team,” said Stankovik. “I was hoping that if I could join Argonne, I would be able to share my knowledge, learn new things, make a few more friends, and help to successfully complete the project.”

Read more on the APS website

Image: Aleksander Stankovik, supply chain coordinator for the Advanced Photon Source Upgrade.

Diamond launches major recruitment campaign at AAAS

Coinciding with Women’s History Month, and in the lead up to International Women’s Day, four of Diamond’s STEM champions launch a new recruitment drive

Today, at the prestigious AAAS science conference in Washington DC, Diamond will unveil plans for its biggest recruitment campaign since its inception 20 years ago. Dozens of new roles will be available in the coming year and some examples of the variety of STEM careers will be showcased and celebrated by an all-women lineup from the Diamond team. This recruitment drive aims to ensure the facility has the knowledge and expertise required to help plan and deliver world leading science for the next decade and beyond.

In the lead-up to International Women’s Day (8th March), Diamond’s workshop will shine a light on career pathways in world-changing science. A panel of four women from Diamond will address how their work across science and engineering helps to address 21st century challenges from energy research to pandemic preparedness.  They will share their professional journeys and insights into their roles. Job roles range from scientists, engineers, software experts, technicians to professional roles all essential to enabling the most brilliant science performed by scientists at Diamond. 

Through part of the next decade, Diamond will deliver an upgrade programme called Diamond-II. To continue delivering the world-changing science that Diamond leads and enables, Diamond-II is a project that will deliver a new machine and new beamlines with a comprehensive series of upgrades to optics, detectors, sample environments, sample delivery capabilities and computing. 

Details on the panel:

The workshop panel will feature Dr Lorraine Bobb – Head of Diagnostics Group; Sarah Macdonell – Head of Beamline Systems Engineering; Dr Chidinma Okolo – Beamline Scientist at B24 and Dr Lucy Saunders – Beamline Scientist at I11. It will be chaired by Isabelle Boscaro-Clarke – Head of Impact, Communications and Engagement, with an interactive Q&A session facilitated by Molly Pekarik Fry – Web and Digital Content Manager.

Read more on the Diamond website

Image: L to R the Diamond Light Source Panel : Dr Chidinma Okolo – Beamline Scientist at B24; Molly Pekarik Fry – Web and Digital Content Manager, Sarah Macdonell – Head of Beamline Systems Engineering; Isabelle Boscaro-Clarke – Head of Impact, Communications and Engagement; Dr Lorraine Bobb – Head of Diagnostics Group; Dr Lucy Saunders – Beamline Scientist at I11

Advanced Light Source upgrade approved to start construction

Berkeley Lab’s biggest project in three decades now moves from planning to execution. The ALS upgrade will make brighter beams for research into new materials, chemical reactions, and biological processes.

The Advanced Light Source (ALS), a scientific user facility at the Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab), has received federal approval to start construction on an upgrade that will boost the brightness of its X-ray beams at least a hundredfold.

“The ALS upgrade is an amazing engineering undertaking that is going to give us an even more powerful scientific tool,” said Berkeley Lab Director Michael Witherell. “I can’t wait to see the many ways researchers use it to improve the world and tackle some of the biggest challenges facing society today.”

Scientists will use the upgraded ALS for research spanning biology; chemistry; physics; and materials, energy, and environmental sciences. The brighter, more laser-like light will help experts better understand what’s happening at extremely small scales as reactions and processes take place. These insights can have a huge array of applications, such as improving batteries and clean energy technologies, creating new materials for sensors and computing, and investigating biological matter to develop better medicines.

“That’s the wonderful thing about the ALS: The applications are so broad and the impact is so profound,” said Dave Robin, the project director for the ALS upgrade. “What really excites me every day is knowing that, when it’s complete, the ALS upgrade will enable researchers to make scientific advances in many different areas for the next 30 to 40 years.”

The DOE approval, known as Critical Decision 3 (CD-3), formally releases funds for purchasing, building, and installing upgrades to the ALS. This includes constructing an entirely new storage ring and accumulator ring, building four feature (two new and two upgraded) beamlines, and installing seismic and shielding upgrades for the concrete structure housing the equipment. The $590 million project is the biggest investment at Berkeley Lab since the ALS was built in 1993.

Read more on the Berkeley Laboratory website

Image: The upgrade to the Advanced Light Source at Berkeley Lab will add two new particle accelerator rings within the iconic building’s footprint. 

Credit: Thor Swift/Berkeley Lab

New Director for massive upgrade into Diamond-II

To cement its position as a world-leading research facility, Diamond Light Source recently revealed plans for a large upgrade called Diamond-II and that is set to strengthen the UK’s global scientific leadership. This will be a transformational upgrade that will enable a huge expansion of UK science capabilities as it involves a coordinated programme of development combining state-of-the-art technology in a new machine, five new flagship beamlines and a comprehensive series of upgrades to its Instruments.

To lead this programme, Diamond has appointed Rob Walden, a Chartered Engineer with over 20 years’ experience in delivering business and process improvement programmes in the aerospace manufacturing engineering industry. This was followed by several years as a senior projects advisor in central government where he was involved in, and delivered, nationwide policy projects as well as helping to develop the programme delivery framework for government. Rob was also part of the Cabinet Office’s Gateway Assurance review team and conducted a number of forensic assurance delivery reviews for programmes of national interest. Additionally, he helped to set up the national programme office structure for Highways England and ran two busy Project Management Offices.

Rob joined Diamond Light Source from Sellafield Ltd where he focused on raising the standards of the programme delivery framework, which included the appointment and development of the SRO (Senior Responsible Officer) function for major projects of national interest. Rob comments:

For over 15 years Diamond has been a leading centre for synchrotron science on the world stage, supporting UK business and academia to undertake cutting-edge research in a diverse set of areas and sectors. I am delighted to join a team of such esteemed colleagues as we move into the next chapter in Diamond’s life, the detailed planning of the delivery of Diamond-II to secure long-term funding, pushing the boundaries of scientific research even further and keeping the UK at the forefront of scientific research.

Read more on the Diamond website

Image: Rob Walden, programme director for Diamond-II

Credit: Diamond Light Source

#SynchroLightAt75 – The first multi-bend achromat synchrotron light source

At the end of the 1990’s, the MAX-lab management realized that it was necessary to start planning for a possible next step in the development of the laboratory. Although MAX II, one of the first 3rd generation light sources in the world and the flagship of the laboratory, had just recently come into operation, the long lead times made it necessary to start exploring possible further developments already at that stage. This is the saga of MAX IV Laboratory, the world’s first Multi-Bend Achromat (MBA) Synchrotron Radiation Light Source. MBAs strongly focus and guide electrons around the storage ring, creating an ultra-low emittance beam and therefore ultra-bright X-ray radiation.

Read more in this Nuclear Instruments and Methods in Physics Research – section A (NIM-A) publication

Image:  Prof. Ingolf Lindau, Director of MAX-lab 1991–97, shows the facility to the king of Sweden, Carl XVI Gustav, at the inauguration of MAX II, 15 September 1995

Credit:  MAX IV

Women in Science @SLRI

Thailand is home to the Synchrotron Light Research Institute (SLRI) and this week’s #LightSourceSelfie features three of their staff members – Dr Phakkhananan Pakawanit, Beamline Scientist, Dr Prapaiwan Sunwong, Accelerator Physicist, and Supawan Srichan, Engineer. During this enlightening video, they explain their roles, the challenges and what excites them about working at a light source. Dr Sunwong describes a big 7 year project to design and build a new 3.0 Gev synchrotron light source in the Eastern Economic Corridor of Innovation (EECi). In June 2022, SLRI will host the 13th International Particle Accelerator Conference (IPAC’22) in Bangkok. IPAC is the main international event for the worldwide accelerator community and industry. To find out more, visit

SLRL’s #LightSourceSelfie

Someday you will get to play with those electrons!

Razib Obaid is a project scientist at the Linac Coherent Light Source (LCLS) at SLAC in California. LCLS is one of 7 free electron lasers in the collaboration. The facility takes X-ray snapshots of atoms and molecules at work, providing atomic resolution detail on ultrafast timescales to reveal fundamental processes in materials, technology and living things. Its snapshots can be strung together into “molecular movies” that show chemical reactions as they happen.

In Razib’s #LightSourceSelfie, he takes you into the Near Experimental Hall and describes the stunning equipment that is used to undertake the experiments, the science it enables and the possibilities for new science with the upgrade to LCLSII. Razib says, “The best thing about working at a light source is the ability as a user to tap into the enormous scientific resources and experience that exists among the staff and scientists. Not to mention the state of the art instrumentation that you have access to, to realise your science. To my younger self, I would say, keep studying quantum mechanics, someday you will get to play with those electrons.”

To learn more about LCLS, visit

Diamond-II programme set to transform UK science

Diamond Light Source has established itself as a world-class synchrotron facility enabling research by leading academic and industrial groups in physical and life sciences. Diamond has pioneered a model of highly efficient and uncompromised infrastructure offered as a user-focussed service driven by technical and engineering innovation.

To continue delivering the world-changing science that Diamond leads and enables, Diamond-II is a co-ordinated programme of development that combines a new machine and new beamlines with a comprehensive series of upgrades to optics, detectors, sample environments, sample delivery capabilities and computing. The user experience will be further enhanced through access to integrated and correlative methods as well as broad application of automation in both instrumentation and analysis. Diamond-II will be transformative in both spatial resolution and throughput and will offer users streamlined access to enhanced instruments for life and physical sciences.

Read more on the Diamond website

Image: Diamond’s synchrotron building

Credit: Diamond Light Source

New X-ray laser data system will process a million images a second

When upgrades to the X-ray laser at the Department of Energy’s SLAC National Accelerator Laboratory are complete, the powerful new machine will capture up to 1 terabyte of data per second; that’s a data rate equivalent to streaming about one thousand full-length movies in just a single second, and analyzing every frame of each movie as they zoom past in this super-fast-forward mode.

Data experts at the lab are finding ways to handle this massive amount of information as the Linac Coherent Light Source (LCLS) upgrades come on line over the next several years.

LCLS accelerates electrons to nearly the speed of light to generate extremely bright beams of X-rays. Those X-rays probe a sample such as a protein or a quantum material, and a detector captures a series of images that reveal the atomic motion of the sample in real time. By stringing together these images, chemists, biologists, and materials scientists can create molecular movies of events like how plants absorb sunlight, or how our drugs help fight disease.

Read more on the SLAC website

Image: Data rate comparisons

Credit: Greg Stewart/SLAC National Accelerator Laboratory

The ALBA Synchrotron to become a 4th generation facility

The Rector Council of the ALBA Synchrotron, counting with the participation of the Ministry of Science and Innovation and the Department of Business and Knowledge of the Generalitat de Cataluña, chaired by Minister Pedro Duque, has given the green light to start working in 2021 on the ALBA II project, an ambitious program that will transform ALBA into a 4th generation synchrotron facility upgrading the accelerator and other components and building new beamlines.

Nowadays, synchrotron facilities are experiencing an outstanding technological evolution, applying new solutions for the design and construction of accelerators, the development of X-ray detectors and the management of experimental data.

The so-called 4th generation synchrotron facilities, compared to those of the 3rd generation, produce a brighter and more coherent photon beam. When analyzing matter, they provide inaccessible capabilities as of today, in terms of resolution, detection levels and the understanding of chemical and electromagnetic properties. In addition, they offer new technological approaches to solve society’s challenges more efficiently and move towards a sustainable and smart economy in a more efficient health system.

Read more on the ALBA website

Image: ALBA synchrotron

Credit: ALBA

Milestone in ALS-Upgrade project will bring in a new ring

Construction of innovative accumulator ring as part of ALS-U project will keep Berkeley Lab at the forefront of synchrotron light source science.

An upgrade of the Advanced Light Source (ALS) at the U.S. Department of Energy’s (DOE’s) Lawrence Berkeley National Laboratory (Berkeley Lab) has passed an important milestone that will help to maintain the ALS’ world-leading capabilities.

On Dec. 23 the DOE granted approval for a key funding step that will allow the project to start construction on a new inner electron storage ring. Known as an accumulator ring, this inner ring will feed the upgraded facility’s main light-producing storage ring, and is a part of the upgrade project (ALS-U).

This latest approval, known as CD-3a, authorizes an important release of funds that will be used to purchase equipment and formally approves the start of construction on the accumulator ring.

>Read more on the Advanced Light Source at Berkeley Lab website

Image: This cutaway rendering of the Advanced Light Source dome shows the layout of three electron-accelerating rings. A new approval step in the ALS Upgrade project will allow the installation of the middle ring, known as the accumulator ring.
Credit: Matthaeus Leitner/Berkeley Lab

Sirius reaches his first stored electron beam

The new Brazilian synchrotron light source continues its successful commissioning

On Saturday, December 14th, CNPEM’s team stored electrons in Sirius’s storage ring for several hours. This is a prerequisite for producing synchrotron light, and it happens only a few weeks after the first electron loop around the main accelerator was achieved.
In addition, on Monday, December 16th, with the connection of the accelerator to one of the beamlines set up for testing, it was possible to receive the first X-ray pulse, still discrete due to the small number of circulating electrons.
The achievement came after an intense and thorough work of adjusting hundreds of equipment parameters, another very important milestone in the Sirius commissioning process. The team is now dedicated to achieving higher and higher currents needed to produce synchrotron light of enough intensity for the first scientific experiments.
Sirius is the largest and most complex scientific infrastructure ever built in Brazil and one of the first 4th generation synchrotron light source to be built in the world and it was designed to put Brazil at the forefront of this type of technology.

>Read more on the LNLS website

First stored beam

6 December, 12.30 pm. Today, the electrons have been stored for the first time, in the new Extremely Brilliant Source (EBS) storage ring.

Today, 6 December 12:30 pm was a great and intense moment for all the ESRF teams: the electrons have been stored for the first time in the new EBS storage ring, only five days after the start of the EBS storage ring commissioning. This is a new key milestone on the way to opening to the international scientific community the first high-energy fourth-generation synchrotron light source, known as EBS – Extremely Brilliant Source.

” Seeing the first beam stored only five days after the start of the commissioning is a huge achievement and an intense moment for all involved. EBS is becoming a reality.” said Pantaleo Raimondi, ESRF accelerator and source director and EBS storage ring concept inventor and project leader.

>Read more on the European Synchrotron website

More magnets, smoother curves: the Swiss Light Source upgrade

The Swiss Light Source SLS is set to undergo an upgrade in the coming years: SLS 2.0.

The renovation is made possible by the latest technologies and will create a large-scale research facility that will meet the needs of researchers for decades to come.

Since 2001, “the UFO” has been providing reliable and excellent service: In the circular building of the Swiss Light Source SLS, researchers from PSI and all over the world carry out cutting-edge research. For example, they can investigate the electronic properties of novel materials, determine the structure of medically relevant proteins, and make visible the nanostructure of a human bone.
“Internationally, the SLS has been setting standards for nearly two decades”, says Terence Garvey, SLS 2.0 accelerator project head. Now, Garvey continues, it’s time for a modernisation. In the coming years, SLS is expected to undergo an upgrade with the project title SLS 2.0. SLS will remain within the same UFO-shaped building, but will get changes in crucial areas inside. Garvey is one of the two project leaders for the upgrade, together with Philip Willmott.

Swiss Light Source (SLS) , , ,