“X-ray streaking” allows ultrafast processes to be followed using a single pulse of light

Grazing light for rapid events

An international team of scientists has developed a new experimental method at the FLASH X-ray laser which allows the sequence of events involved in a process to be observed using a single, ultrashort pulse of light from FLASH. Their method is called “X-ray streaking” and enables researchers to observe ultrafast processes continuously, instead of being confined to taking snapshots at discrete intervals using separate X-ray pulses. Apart from the extreme brightness of the FLASH beam, the scientists also made use of an X-ray lens which they introduced into the beamline in a particular configuration, so as to capture a chronological sequence of events using a single X-ray pulse. To demonstrate the functionality of X-ray streaking, they observed the ultrafast demagnetisation of cobalt.

The invention of X-ray lasers has considerably boosted the study of the dynamics of matter. Pump-probe experiments allow artificially induced (“pumped”) processes and reactions to be photographed (“probed”) using an extremely short X-ray pulse at predetermined intervals. Ideally, these photographs, taken with different time delays, can then be assembled to create a film showing the sequence of events during an ultrafast process with a temporal resolution of the order of femtoseconds. One limitation of this otherwise promising experimental technique is, however, that the experiment has to be conducted all over again for each time delay. This means that before each observation, the process of interest must be triggered using the same starting conditions and it must run through the same sequence of events – both of which rule out extreme experimental conditions.

>Read more on the FLASH website

Image Caption: (a,b) Raw images from the reflection and reference detectors respectively. Both the images for the pumped and the un-pumped event are acquired using a single x-ray pulse. (c) Transient reflectivity image (as defined in the text) calculated from the images shown in (a,b). (d) Reshaped transient reflectivity image after calibration of the time window. Article published in Scientific Reports.