Experiments at Berkeley Lab’s Advanced Light Source reveal how a hydrocarbon called pyrene could form near stars
Scientists have used lab experiments to retrace the chemical steps leading to the creation of complex hydrocarbons in space, showing pathways to forming 2-D carbon-based nanostructures in a mix of heated gases.
The latest study, which featured experiments at the Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab), could help explain the presence of pyrene, which is a chemical compound known as a polycyclic aromatic hydrocarbon, and similar compounds in some meteorites.
A team of scientists, including researchers from Berkeley Lab and UC Berkeley, participated in the study, published March 5 in the Nature Astronomy journal. The study was led by scientists at the University of Hawaii at Manoa and also involved theoretical chemists at Florida International University.
>Read more on the Advanced Light Source website
Image: A researcher handles a fragment and a test tube sample of the Murchison meteorite, which has been shown to contain a a variety of hydrocarbons and amino acids, in this photo from a previous, unrelated study at Argonne National Laboratory. Experiments at Berkeley Lab are helping to retrace the chemical steps by which complex hydrocarbons like pyrene could form in the Murchison meteorite and other meteorites.
Credit: Argonne National Laboratory