DESY-led international collaboration obtains first scientific results from European XFEL
An international collaboration led by DESY and consisting of over 120 researchers has announced the results of the first scientific experiments at Europe’s new X-ray laser European XFEL. The pioneering work not only demonstrates that the new research facility can speed up experiments by more than an order of magnitude, it also reveals a previously unknown structure of an enzyme responsible for antibiotics resistance. “The groundbreaking work of the first team to use the European XFEL has paved the way for all users of the facility who greatly benefit from these pioneering experiments,” emphasises European XFEL managing director Robert Feidenhans’l. “We are very pleased – these results show that the facility works even better than we had expected and is ready to deliver new scientific breakthroughs.” The scientists present their results, including the first new protein structure solved at the European XFEL, in the journal Nature Communications.
“Being at a totally new class of facility we had to master many challenges that nobody had tackled before,” says DESY scientist Anton Barty from the Center for Free-Electron Laser Science (CFEL), who led the team of about 125 researchers involved in the first experiments that were open to the whole scientific community. “I compare it to the maiden flight of a novel aircraft: All calculations and assembly completed, everything says it will work, but not until you try it do you know whether it actually flies.”
The 3.4 kilometres long European XFEL is designed to deliver X-ray flashes every 0.000 000 220 seconds (220 nanoseconds). To unravel the three-dimensional structure of a biomolecule, such as an enzyme, the pulses are used to obtain flash X-ray exposures of tiny crystals grown from that biomolecule. Each exposure gives rise to a characteristic diffraction pattern on the detector. If enough such patterns are recorded from all sides of a crystal, the spatial structure of the biomolecule can be calculated. The structure of a biomolecule can reveal much about how it works.
>Read more on the DESY website and on the European XFEL website
Image: Artist’s impression of the experiment: When the ultra-bright X-ray flashes (violet) hit the enzyme crystals in the water jet (blue), the recorded diffraction data allow to reconstruct the spatial structure of the enzyme (right).
Credit: DESY/Lucid Berlin