Intermittent plasticity in individual grains

A study using high energy x-ray diffraction.

Understanding the behavior of metals undergoing deformation is critical to design for fuel efficiency, performance and safety/crashworthiness. Traditional engineering analysis treats metal deformation as a smooth motion, like a fluid, when in reality the flow is intermittent at finer length scales. Use of a new detector enabled the study of these intermittent bursts of deformation at the scale of individual crystals in a loaded test sample.
A metal component is polycrystalline, composed of many crystals or grains. At the scale of millimeters, the deformation of a metal appears to proceed smoothly, whereas at the microscopic scale the underlying processes occurring in individual grains proceed in fits and starts. In this collaboration between researchers at Cornell University, the University of Illinois at Urbana-Champaign, the Air Force Research Laboratory and the Advanced Photon Source of Argonne National Laboratory, a high-speed detector was used to study these microscale deformation bursts in a grain-by-grain manner.

>Read more on the CHESS website

Image: The MM-PAD is shown with the vacuum cover and x-ray window removed. The 2×3 arrangement of detector modules are the brownish squares in the center.  Each module consists of 128×128 square pixels, where each pixel is 150µm of a side. Each module is roughly 2 cm x 2 cm in size. There is a 5 pixel wide (0.75 mm) inactive area between adjacent modules. (This photo is of an MM-PAD with Si, instead of CdTe sensors; otherwise, the two types of MM-PADs look identical.)