Low background noise crucial for single particle imaging experiments

Model experiment brings scientists a step closer to SPI at European XFEL

Taking snapshots of single molecules with X-rays has long been a dream for many scientists. Such experiments have successfully been computationally modelled, but have never been practically demonstrated before.
In a model experiment carried out at the European Synchrotron Radiation Facility (ESRF), European XFEL scientists, together with international collaborators, have now come one step closer to successfully carrying out so-called single particle imaging experiments (SPI) at X-ray laser facilities such as European XFEL. In a paper published today in the journal from the International Union of Crystallography (IUCrJ), scientists demonstrate experimentally that, in principle, a 3D structure can indeed be obtained from many tens of thousands of very weak images, using X-rays with similar properties as produced at X-ray free-electron lasers such as European XFEL.

>Read more on the European XFEL website

Image: Reconstruction of the 3D electron density. (a) Reconstruction from the result derived by EMC. The electron density projected along an axis perpendicular to the drawing plane is shown here. (b) Reconstruction from the reference Fourier volume. Again, the projected electron density is shown. (c) 3D iso-surface rendering of the reconstructed electron density shown in panel (a). The threshold of the iso-surface has been set to 0.2, given a normalized density with values between 0 and 1. (d) Scanning electron micrograph from the original sample.
Image source