New material with magnetic shape memory

Researchers at the Paul Scherrer Institute PSI and ETH Zurich have developed a new material whose shape memory is activated by magnetism.

It retains a given shape when it is put into a magnetic field. It is a composite material consisting of two components. What is special about the new material is that, unlike previous shape-memory materials, it consists of a polymer and droplets of a so-called magnetorheological fluid embedded in it. Areas of application for this new type of composite material include medicine, aerospace, electronics and robotics. The researchers are now publishing their results in the scientific journal Advanced Materials.
It looks like a magic trick: A magnet moves away from a black, twisted band and the band relaxes –without any further effect (see video). What looks like magic can be explained by magnetism. The black ribbon consists of a composite of two components: a silicone-based polymer and small droplets of water and glycerine in which tiny particles of carbonyl iron float. The latter provide the magnetic properties of the material and its shape memory. If the composite material is forced into a certain shape with tweezers and then exposed to a magnetic field, this shape is retained even when the tweezers are removed. Only when the magnetic field is also removed does the material return to its original shape.

>Read more on the Swiss Light Source website

Image: Paolo Testa, first author of the study, with a model of the overall structure of the shape-memory material
Credit: Paul Scherrer Institute/Mahir Dzambegovic