Tuning material properties with laser light

The research results suggest the possibility of creating microelectronic devices that use a laser beam to erase and rewrite bits of information in materials engineered for random-access memory and data storage.

Many semiconductor-based devices use electric currents to control and manipulate bits of information encoded into tiny magnetic domains. However, this approach is reaching the physical limits of thermally stable feature sizes, and scientists are actively searching for the next generation of materials and processes that could lead to smaller, faster, more powerful devices.
One possible path forward has been opened up by the emergence of materials that can be engineered, layer by layer, to theoretical specifications. Multiferroics, for example, are designed materials with technologically useful properties that can be controlled by external fields. While many studies have been performed on the effects of electric and magnetic fields on multiferroics, very few studies have explored the use of optical modulation (i.e., laser light) as a way to tune magnetic and electronic ordering in such materials.

>Read more on the Advanced Light Source at LBL website

Images: They are taken at the same illuminated region using PFM, PEEM with linearly polarized x-rays, and PEEM with circularly polarized x-rays. The strong black and white contrast in the linear dichroism image indicates the antiferromagnetic order; the red/blue contrast in the circular dichroism image shows the existence of ferromagnetic moments that lie parallel/antiparallel to the incident x-rays, respectively.