Soft X-ray Laminography: 3D imaging with powerful contrast mechanisms

Soft X-ray 3D imaging has already been realized at synchrotron radiation sources using either scanning transmission X-ray microscopy (STXM) schemes or tomography-based concepts. However, the maximum accessible sample volume is severely limited by the reduced penetration depth of the lower-energy soft X-ray radiation. This becomes even more of a drawback in the case of flat and extended specimens, which can be found in various fields of nanoscience.

The generalized geometry of laminography, characterized by a tilted axis of rotation concerning the incident X-ray beam resulting in a constant material thickness during rotation, has proven to be particularly suitable for the investigation of laterally extended and thin objects. The combination of soft X-rays and laminography provides the unique potential of bridging the gap between investigations of elaborate nanostructured thin film samples and taking advantage of the characteristic absorption contrast mechanisms in the soft X-ray range.

>Read more on the Swiss Light Source at PSI website

Image: 3D model constructed from soft X-ray laminography measurements of the front tip of the wing scale from a European peacock butterfly.