The work provides rational guidance for the development of better electrocatalysts for applications such as hydrogen-fuel production and long-range batteries for electric vehicles.
The oxygen evolution reaction (OER) is the electrochemical mechanism at the heart of many processes relevant to energy storage and conversion, including the splitting of water to generate hydrogen fuel and the operation of proposed long-range batteries for electric vehicles. Because the OER rate is a limiting factor in such processes, highly active OER electrocatalysts with long-term stability are being sought to increase reaction rates, reduce energy losses, and improve cycling stability. Catalysts incorporating rare and expensive materials such as iridium and ruthenium exhibit good performance, but an easily prepared, efficient, and durable OER catalyst based on earth-abundant elements is still needed for large-scale applications.
Key insight: shorter O-O bonds
In an earlier study, a group led by John Goodenough (2019 Nobel laureate in chemistry) measured the OER activities of two compounds with similar structures: CaCoO3 and SrCoO3. They found that the CaCoO3 exhibited higher OER activity, which they attributed to its shorter oxygen–oxygen (O-O) bonds. Inspired by this, members of the Goodenough group have now analyzed a metallic layered oxide, Na0.67CoO2, which has an even more compact structure than CaCoO3. X-ray diffraction (XRD) experiments performed at the Advanced Photon Source (APS) confirmed that the shortest O-O separation in Na0.67CoO2 is 2.30 Å, compared to 2.64 Å for CaCoO3. The researchers then compared the OER performance of Na0.67CoO2 with IrO2, Co3O4, and Co(OH)2. They found that Na0.67CoO2 exhibited the highest current density, the lowest overpotential (a measure of thermodynamic energy loss), and the most favorable Tafel slope (sensitivity of the electric current to applied potential). The Na0.67CoO2 also showed excellent stability under typical operating conditions.
>Read more on the Advanced Light Source website
Image: (extract, full image here) A new electrocatalyst prepared for this study, Na0.67CoO2, consists of two-dimensional CoO2 layers separated by Na layers (not shown). The Co ions (blue spheres) have four different positions (Co1-Co4), and the distorted Co–O octahedra have varying oxygen–oxygen (O-O) separations (thick red lines connecting red spheres). All of the O-O bonds are shorter than 2.64 Å (the length of the corresponding bonds in a comparable material), and the shortest bonds are less than 2.40 Å. It turns out that O-O separation has a strong effect on the oxygen evolution reaction (OER) in this material.