A group from Brazil and an HZB team have investigated a novel composite membrane for ethanol fuel cells. It consists of the polymer Nafion, in which nanoparticles of a titanium compound are embedded by the rarely explored melt extrusion process. At BESSY II they were able to observe in detail, how the nanoparticles in the Nafion matrix are distributed and how they contribute to increase proton conductivity.
Ethanol has five times higher volumetric energy density (6.7 kWh/L) than hydrogen (1.3 kWh/L) and can be used safely in fuel cells for power generation. In Brazil in particular there is great interest in better fuel cells for ethanol as all the country distributes low-cost ethanol produced in a renewable way from sugar cane. Theoretically, the efficiency of an ethanol fuel cell should be 96 percent, but in practice at the highest power density it is only 30 percent, due to a variety of reasons. So there is great room for improvements.
Nafion with nanoparticles
A team led by Dr. Bruno Matos from the Brazilian research institute IPEN is therefore investigating novel composite membranes for direct ethanol fuel cells. A promising solution is tailoring new polymer-based composite electrolyte materials to replace the state-of-the-art polymer electrolyte such as Nafion. Matos and his team use melt extrusion process to produce composite membranes based on Nafion with additional titanate nanoparticles, which have been functionalized with sulfonic acid groups.
Read more on BESSY II (at HZB) website
Image: The material consists of Nafion with embedded nanoparticles.
Credit: © B.Matos/IPEN