A scalable platform for two-dimensional metals

SCIENTIFIC ACHIEVEMENT

Using a new method for stabilizing a two-dimensional (2D) metal on a large-area platform, researchers probed the origins of the material’s superconductivity at the Advanced Light Source (ALS).

SIGNIFICANCE AND IMPACT

The work represents a notable milestone in advancing 2D materials toward broad applications in topological computing, advanced optics, and molecular sensing.

Expanding the scientific palette

If you confine everyday metals to layers only a few atoms thick, they acquire new properties that are different from those exhibited by their more common bulk forms. The ability to synthesize such two-dimensional (2D) metals means that the range of materials available for novel uses can be expanded to different areas of the periodic table—providing a much richer “scientific palette” of properties for applications in topological computing, advanced optics, and molecular sensing.

Read more on the ALS website

Image: A confined layer of metal atoms (silver spheres) on a silicon carbide (SiC) substrate is capped by a layer of graphene, allowing for new forms of low-dimensional metals with unique properties. Gold spheres represent Cooper pairs, responsible for conventional superconductivity. 

Credit: Yihuang Xiong/Penn State