Researchers capture how materials break apart following an extreme shock

Understanding how materials deform and catastrophically fail when impacted by a powerful shock is crucial in a wide range of fields, including astrophysics, materials science and aerospace engineering. But until recently, the role of voids, or tiny pores, in such a rapid process could not be determined, requiring measurements to be taken at millionths of a billionth of a second.

Now an international research team has used ultrabright X-rays to make the first observations of how these voids evolve and contribute to damage in copper following impact by an extreme shock. The team, including scientists from the University of Miami, the Department of Energy’s SLAC National Accelerator Laboratory and Argonne National Laboratory, Imperial College London and the universities of Oxford and York published their results in Science Advances.

“Whether these materials are in a satellite hit by a micrometeorite, a spacecraft entering the atmosphere at hypersonic speed or a jet engine exploding, they have to fully absorb all that energy without catastrophically failing,” says lead author James Coakley, an assistant professor of mechanical and aerospace engineering at the University of Miami. “We’re trying to understand what happens in a material during this type of extremely rapid failure. This  experiment is the first round of attempting to do that, by looking at how the material compresses and expands during deformation before it eventually breaks apart.”

Read more on the SLAC website

Image: To see how materials respond to intense stress, researchers shocked a copper sample with picosecond laser pulses and used X-ray laser pulses to track the copper’s deformation. They captured how the material’s atomic lattice first compressed and subsequently expanded,, creating pores, or voids, that grew, coalesced, and eventually fractured the material.

Credit: Greg Stewart/SLAC National Accelerator Laboratory