New research that exploited the unique strengths of the FAST beamline produced some of the first measurements of individual grain deformation in high entropy alloys. This data can help form accurate predictions of damage and failure processes in these emerging materials, critical for understanding their performance in real-world applications.
Grains and strains | A subset of the thousands of indexed grains are shown, along with their axial elastic strains (top) and maximum resolved sheer stress (bottom), at 4 positions indicated on the stress-strain curve. This microscopic detail is only available via high-energy x-ray techniques.
What is the discovery?
Conventional alloys are made primarily of one metal element, with a small substitution of other atoms to tune the properties (for example, 7.5% Cu and 92.5% Ag produces sterling silver). Recently, new types of high entropy alloys (HEAs) have been discovered, which are made by mixing many different metallic elements in nearly-equal proportions. HEAs can exhibit remarkably different properties from conventional alloys. In a new paper, a team lead by Jerard Gordon from the University of Michigan reports a high-energy x-ray study of the HEA made from mixing equal amounts of Co, Cr, Fe, Mn, and Ni. The team was able to use far-field high-energy diffraction microscopy (ff-HEDM) to understand the microscopic response of thousands of individual crystal grains in their sample when it is deformed under load. They were also able to compare the results with detailed crystal-plasticity models.
Read more on the CHESS website
Image: Grains and strains | A subset of the thousands of indexed grains are shown, along with their axial elastic strains (top) and maximum resolved sheer stress (bottom), at 4 positions indicated on the stress-strain curve. This microscopic detail is only available via high-energy x-ray techniques.