High-speed X-ray free-electron lasers have unlocked the crystal structures of small molecules relevant to chemistry and materials science, proving a new method that could advance semiconductor and solar cell development.
Compounds that form tiny crystals hold secrets that could advance renewable energy generation and semiconductor development. Revealing the arrangement of their atoms has already allowed for breakthroughs in materials science and solar cells. However, existing techniques for determining these structures can damage sensitive microcrystals.
Now scientists have a new tool in their tool belts: a system for investigating microcrystals by the thousands with ultrafast pulses from an X-ray free-electron laser (XFEL), which can collect structural information before damage sets in. This approach, developed over the past decade to study proteins and other large biological molecules at the Department of Energy’s SLAC National Accelerator Laboratory, has now been applied for the first time to small molecules that are of interest to chemistry and materials science.
Researchers from the University of Connecticut, SLAC, DOE’s Lawrence Berkeley National Laboratory and other institutions developed the new process, called small molecule serial femtosecond X-ray crystallography or smSFX, to determine the structures of three compounds that form microcrystal powders, including two that were previously unknown. The experiments took place at SLAC’s Linac Coherent Light Source (LCLS) XFEL and the SACLA XFEL in Japan.
Read more on the SLAC website
Image: Artist’s rendition of the X-ray beam illuminating a solution of powdered metal-organic materials called chalcogenolates.
Credit: Ella Maru Studios