New AI-driven tool streamlines experiments

Researchers at the Department of Energy’s SLAC National Accelerator Laboratory have demonstrated a new approach to peer deeper into the complex behavior of materials. The team harnessed the power of machine learning to interpret coherent excitations, collective swinging of atomic spins within a system. 

This groundbreaking research, published recently in Nature Communications, could make experiments more efficient, providing real-time guidance to researchers during data collection, and is part of a DOE-funded project led by Howard University including researchers at SLAC and Northeastern University to use machine learning to accelerate research in materials. 

The team created this new data-driven tool using “neural implicit representations,” a machine learning development used in computer vision and across different scientific fields such as medical imaging, particle physics and cryo-electron microscopy. This tool can swiftly and accurately derive unknown parameters from experimental data, automating a procedure that, until now, required significant human intervention.

Peculiar behaviors

Collective excitations help scientists understand the rules of systems, such as magnetic materials, with many parts. When seen at the smallest scales, certain materials show peculiar behaviors, like tiny changes in the patterns of atomic spins. These properties are key for many new technologies, such as advanced spintronics devices that could change how we transfer and store data. 

To study collective excitations, scientists use techniques such as inelastic neutron or X-ray scattering. However, these methods are not only intricate, but also resource-intensive given, for example, the limited availability of neutron sources. 

Machine learning offers a way to address these challenges, although even then there are limitations. Past experiments used machine learning techniques to enhance the accuracy of X-ray and neutron scattering data interpretation. These efforts relied on traditional image-based data representations. But the team’s new approach, using neural implicit representations, takes a different route. 

Read more on SLAC website