For the first time an HZB team was able to examine samples of blue phosphorus at BESSY II and confirm via mapping of their electronic band structure that this is actually this exotic phosphorus modification.
Blue phosphorus is an interesting candidate for new optoelectronic devices. The results have been published in Nano Letters.
The element phosphorus can exist in various allotropes and changes its properties with each new form. So far, red, violet, white and black phosphorus have been known. While some phosphorus compounds are essential for life, white phosphorus is poisonous and inflammable and black phosphorus – on the contrary – particularly robust. Now, another allotrope has been identified: In 2014, a team from Michigan State University, USA, performed model calculations to predict that “blue phosphorus” should be also stable. In this form, the phosphorus atoms arrange in a honeycomb structure similar to graphene, however, not completely flat but regularly “buckled”. Model calculations showed that blue phosphorus is not a narrow gap semiconductor like black phosphorus in the bulk but possesses the properties of a semiconductor with a rather large band gap of 2 electron volts. This large gap, which is seven times larger than in bulk black phosphorus, is important for optoelectronic applications.
>Read more on the BESSY II at HZB website
Image: https://pubs.acs.org/doi/10.1021/acs.nanolett.8b01305