Rich electronic features of a kagome superconductor

The recently discovered layered kagome metals AV3Sb5 (A=K, Rb, Cs) exhibit diverse correlated phenomena, thought to be linked to so-called Van Hove singularities (VHSs) and flat bands in the material. Using a combination of polarization-dependent angle-resolved photoemission spectroscopy (ARPES) and density-functional theory, researchers led by Professor Ming Shi at the Paul Scherrer Institute directly revealed the sublattice properties of 3d-orbital VHSs and flat bands, as well as topologically non-trivial surface states in CsV3Sb5. The research reveals important insights into the material’s electronic structure and provides a basis for understanding correlation phenomena in the metals.

So-called kagome metals, named after the Japanese woven bamboo pattern their structure resembles, feature symmetrical patterns of interlaced, corner-sharing triangles. This unusual lattice geometry and its inherent features lead, in turn, to curious quantum phenomena such as unconventional, or high-temperature, superconductivity.

The potential for devices that might transport electricity without dissipation at room temperature—as well as a thirst for fundamental theoretical understanding—have led researchers to investigate this new class of quantum materials and try to figure out how electrons interact with the kagome lattice to generate such remarkable features.

A recently discovered class of AV3Sb5 kagome metals, where A can be =K, Rb or Cs, was shown, for instance, to feature bulk superconductivity in single crystals at a maximum Tc of 2.5 at ambient pressure. Researchers suspect that this is a case of unconventional superconductivity, driven by some mechanism other than the phonon exchange that characterizes bonding in the electron-phonon coupled superconducting electron-pairs of conventional superconductivity.

This, as well as other exotic properties observed in the metal, are thought to be connected to its multiple “Van Hove singularities” (VHSs) near the Fermi level. VHSs, associated with the density of states (DOS), or set of different states that electrons may occupy at a particular energy level, can enhance correlation effects when a material is close to or reaches this energy level. If the Fermi level lies in the vicinity of a Van Hove point, the singular DOS determines the physical behavior due to the large number of available low-energy states. In particular, interaction effects get amplified not only in the particle-particle, but also in the particle-hole channels, leading to the notion of competing orders.

Read more on the PSI website

Image: Yong Hu, first author, and Nicholas Clark Plumb, who made the experimental station, at the Surface/Interface Spectroscopy (SIS) beamline of the Swiss Light Source (SLS) (L to R)

Credit: Paul Scherrer Institut / Mahir Dzambegovic