Beam diagnostics for future laser wakefield accelerators

For decades, particle accelerators have been getting bigger and bigger. In the meantime, ring accelerators with circumferences of many kilometres have reached a practical limit. Linear accelerators in the GHz range also require very long construction lengths. For some years now, however, an alternative is explored: “tabletop particle accelerators” based on the laser excitation of charge waves in plasmas (laser wakefield). Such compact particle accelerators would be particularly interesting for future accelerator-driven light sources, but are also being investigated for high-energy physics. A team from Helmholtz-Zentrum Berlin (HZB) and the Physikalisch-Technische Bundesanstalt (PTB) has developed a method to precisely measure the cross-section of electron bunches accelerated in this way.  This brings applications of these new accelerator technologies for medicine and research closer.

The principle of laser wakefield accelerators: A high-power laser excites a charge wave in a plasma, which propagates at the speed of the laser pulse and pulls electrons behind it in its “wake”, thus accelerating them. Electron energies in the GeV range have been achievable with this technique for some time. However, the electron bunches produced in this way have so far been too small and too poorly focused to use the synchrotron radiation they emit, an intense, coherent light that is used for research in many different disciplines.

Read more on the HZB website

Image: Information on beam quality can be extracted via the interference patterns at different focal lengths and photon intensities.

Credit: ©