X-ray microscopy with 1000 tomograms per second

Tomoscopy is an imaging method in which three-dimensional images of the inside of materials are reconstructed in rapid succession. A new world record has now been set at the Swiss Light Source at the Paul Scherrer Institute: with 1000 tomograms per second, it is now possible to non-destructively capture very fast processes and structural changes in materials on the micrometre scale, such as the burning of a sparkler or the foaming of a metal alloy for the production of stable lightweight materials. 

Most people are familiar with computed tomography from medicine: a part of the body is X-rayed from all sides and a three-dimensional image is then calculated, from which any sectional images can be created for diagnosis.

This method is also very useful for material analysis, non-destructive quality testing or in the development of new functional materials. However, to examine such materials with high spatial resolution and in the shortest possible time, the particularly intense X-ray light of a synchrotron light source is required. In the synchrotron light, even rapid changes and processes in material samples can be visualised if it is possible to capture 3-dimensional images in a very short time sequence.

A team led by Francisco García Moreno from the Helmholtz Centre Berlin is working on this, together with researchers from the Swiss Light Source SLS at the Paul Scherrer Institute (PSI). Two years ago, they managed a record 200 tomograms per second, calling the method of fast imaging “tomoscopy”. Now the team has achieved a new world record: with 1000 tomograms per second, they can now record even faster processes in materials or during the manufacturing process. This is achieved without any major compromises in the other parameters: the spatial resolution is still very good at several micrometres, the field of view is several square millimetres and continuous recording periods of up to several minutes are possible.

Read more on the PSI website

Image: Christian Schlepütz at the Tomcat beamline of the Swiss Light Source SLS, where a team of scientists have developed a 3D imaging method capable of recording 1,000 tomograms per second.

Credit: Paul Scherrer Institute/Mahir Dzambegovic