Nonprecious transition metal nitrides as efficient oxygen reduction electrocatalysts for alkaline fuel cells

CHEXS users have discovered a class of nonprecious metal derivatives that can catalyze fuel cell reactions about as well as platinum, at a fraction of the cost. A critical part of the fuel cell is the oxygen reduction reaction, an infamously sluggish process that is traditionally sped up by platinum and other precious metals. Now, in a new paper appearing in the journal Science Advances, a team lead by Héctor Abruña (the Émile M. Chamot Professor of Chemistry and Chemical Biology at Cornell University), have reported a new cobalt nitride catalyst material with near identical efficiency to platinum while costing 475 times less (as of February 2022). Carbon-supported cobalt nitride (Co3N/C) achieved a record-high peak power density among reported nitride cathode catalysts of 700 mW cm−2 in alkaline membrane electrode assemblies. The material was demonstrated to remain stable below 1.0V potentials inside working fuel cells, using operando x-ray spectroscopy at the PIPOXS beamline. Operando XANES and EXAFS (A,B) show dramatic changes in valence and bond lengths for potentials above 1V, while below 1V the material remains stable (C,D).

Read more on the CHESS website