Hijacker parasite blocked from infiltrating blood

A major international collaboration led by Melbourne researchers has discovered that the world’s most widespread malaria parasite infects humans by hijacking a protein the body cannot live without.

The researchers were then able to successfully develop antibodies that disabled the parasite from carrying out this activity.
The study, led by the Walter and Eliza Hall Institute’s Associate Professor Wai-Hong Tham and Dr Jakub Gruszczyk, found that the deadly malaria parasite Plasmodium vivax (P. vivax) causes infection through latching onto the human transferrin receptor protein, which is crucial for iron delivery into the body’s young red blood cells.

Published today in Science, the discovery has solved a mystery that researchers have been grappling with for decades.
The MX and SAXS beamline staff at the Australian Synchrotron assisted with data collection.

Associate Professor Tham, who is also a HHMI-Wellcome International Research Scholar, said the collective efforts of teams from Australia, New Zealand, Singapore, Thailand, United Kingdom, United States, Brazil and Germany had brought the world closer to a potential effective vaccine against P.vivax malaria.

>Read more on the Australian Synchrotron website