Producing less costly, greener hydrogen peroxide

Australian researchers led by the University of New South Wales have used the Australian Synchrotron to understand how the chemical structure of an advanced catalytic material contributes to its stability and efficiency. The approach has the potential to produce hydrogen peroxide (H2O2) in a process that is cost-effective with less harm to the environment.

Hydrogen peroxide is an important chemical that used widely in a range of applications, including wastewater treatment, disinfection, paper/pulp bleaching, semi-conductor cleaning, mining and metal processing, fuel cells and in chemical synthesis.

According to an international market research group, IMARC, the global hydrogen peroxide market size was valued at US$4.0 billion in 2017 and is increasing.

Read more on the ANSTO website

Image: The optimized geometry structures of bare CoN4 moiety and CoN4 moieties with different coverages of epoxy oxygen. The gray, blue, orange and red balls represent C, N, Co and O atoms, respectively [Reprinted with permission by Creative Commons License: Attribution 4.0 International (CC BY 4.0)]

Secrets of spider web strength revealed

An international collaboration between the University of MelbourneUniversity of Bayreuth and ANSTO’s Australian Synchrotron provides the first insights into how the rare silk of the Australian basket-web spider retains its strength and resilient structure— allowing the spider to make a robust and rather exquisite silken basket.  

The silk is so firm and remarkable that it enables the basket web to maintain its structural integrity without any support from the surrounding vegetation.

The insights into physical and chemical properties of this basket-web silk may be useful for the production of artificial spider silks, which have already shown strong potential as an advanced biomimetic material in textile and medical applications.

“The biochemical makeup of the silk thread cross-section, particularly secondary protein structures and complex carbohydrates, was examined on the Infrared Microspectroscopy (IRM) beamline at the Australian Synchrotron,” said beamline scientist and co-author, Dr Pimm Vongsvivut.

Read more on the ANSTO website

Image: Credit:  Hanyl et al, “Free-standing spider silk webs of the thomisid Saccodomus Formivorus are made of composites comprising micro- and submicron fibers,” Scientific Reports10, 17624 (2020)

Investigating high temperature superconductors

Researchers from the ARC Centre of Excellence in Future Low Energy Electronic Technologies (FLEET) used the Soft X-ray Spectroscopy beamline at the Australian Synchrotron to investigate the structure of a promising high-temperature superconductor, a calcium-doped graphene material.

The FLEET Centre has provided a detailed description of the research, published in The Chemistry of Materials, on their website.

In characterising the material, the investigators wanted to clarify where the calcium went after it was added to a sample consisting of a single layer of graphene on a silicon carbide substrate.

Measurements at the Australian Synchrotron were able to pinpoint that the calcium atoms were located, unexpectedly, near the silicon carbide surface.

Read more on the ANSTO website

Image: Dr Anton Tadich (far right) with SXR beamline team members and researchers from the FLEET Centre.

Research could lead to better herbicides and infection treatments

Researchers from the University of Queensland (UQ) have used the Australian Synchrotron and cryo-electron microscopy in China to determine the three-dimensional structure of a complex enzyme found in plants microbes that could be used to develop advanced herbicides and treatments for infection.

A large international team led by Prof Luke Guddat of UQ published the structure of the enzyme acetohydroxyacid synthase (AHAS) in the journal Nature and also explained the first step in how the enzyme regulates the biosynthesis of three essential amino acids, leucine, valine and isoleucine.

“The way that the complex regulates this pathway had been unknown until now. We were finally able to explain it by understanding how the entire structure was assembled,” said Prof Guddat, who has been researching this enzyme for twenty years.

Read more on the Australian Synchrotron website

Image: The 3D structure resembles a ‘Maltese Cross’.

Significant progress on ultraflexible solar cells

Research from Monash University, the University of Tokyo and RIKEN, partly undertaken at the Australian Synchrotron, has produced an ultra-flexible ultra-thin organic solar cell that delivered a world-leading performance under significant stretching and strain.

The development paves the way forward for a new class of stretchable and bendable solar cells in wearable devices, such as fitness and health trackers, and smart watches with complex curved surfaces.

The advance, which was published in Joule, was made possible by designing an ultra-thin material based on a blend of polymer, fullerene and non-fullerene molecules with the desired mechanical properties and power efficiency, according to Dr Wenchao Huang, a Research Fellow at Monash University and the article’s first author.
The thickness of the solar cell film is only three micrometres, which is ten times smaller than the width of a human hair.

Dr Huang, who completed his PhD in the lab of Prof Chris McNeill at Monash on flexible organic solar cells, received the Australian Synchrotron’s Stephen Wilkins Medal in 2016 for his exceptional doctoral thesis that made use of the synchrotron-based research capabilities at the facility.

>Read more no the Autralian Lightsource at ANSTO website

Image: Schematic of ultraflexible solar cell

Expertise in characterising materials for lithium ion batteries

Pioneering work on materials for energy production, such as lithium ion batteries, has made ANSTO a centre of specialist capabilities and expertise.

(…)
In addition to the research on lithium-ion batteries; the team also investigates other types of batteries that can reversibly host ions, such as sodium and potassium ion batteries. 
Dr Christophe Didier, a post-doc working with Peterson at the ACNS and shared with Peterson’s University of Wollongong collaborators, published work in Advanced Energy Materials providing structural insights into layered manganese oxide electrodes for potassium-Ion batteries.
“In this case, we were able to use X-rays on an operating battery at the Australian Synchrotron,  because potassium has a lot more electrons than lithium.”
These results again confirm the importance of understanding the detailed structural evolution that underpins performance that will inform the strategic design of electrode materials for high-performance potassium ion batteries. “We do have many collaborators but we are always interested in new projects.  Because we are knowledgeable in the materials themselves, we can contribute to the selection of suitable materials as well as leading the characterisation effort.

>Read more on the Australian Synchrotron (ANSTO) website

Image: Powder diffraction instrument scientist, Dr Qinfen Gu at the Australian Synchrotron.

Stopping yellow spot fungus that attacks wheat crops

Scientists from the Centre for Crop and Disease Management (CCDM) and Curtin University in Western Australia have used an advanced imaging technique at the Australian Synchrotron for an in-depth look at how a fungus found in wheat crops is damaging its leaves.

Prof Mark Gibberd, director of the Centre, said the investigation was thought to be one of the first that utilised high-resolution X-ray imaging to examine biotic stress related to fungal infection in wheat.
Using X-ray fluorescence microscopy (XFM) on leaf samples collected from wheat plants, the team, which included project leader Dr Fatima Naim and ARC Future Fellow Dr Mark Hackett, mapped specific elements in the leaves in and around points of infection.

“Our research project looks at the physiological impact of plant diseases, such as yellow spot, on the function of leaves” said Gibberd.
Yellow spot is a ubiquitous fungal disease caused by Pyrenophora tritici-repentis (Ptr). It can reduce grain yields by up to 20 per cent – a significant amount which could be the difference between a profitable and non-profitable crop for a farmer.
In Australia, it is one of the most costly diseases to the wheat industry, with wheat yield losses due to yellow spot estimated at over $210 million per year. 

>Read more on the Autralisan Synchrotron at ANSTO website

Image: FM image reveals elements present in yellow spot fungs and the wheat leaves.
Credit: Curtin University

Progress on Project Bright beamlines

The complex engineering of scientific instruments is explored in this ‘behind the scenes’ look at the installation of frontends for two new beamlines at the Australian Synchrotron.

Good progress has been made on the installation of supporting infrastructure for the first of the new beamlines for the Australian Synchrotron as part of Project Br–ght.
The work is a series of complex engineering tasks that require precise planning, the expertise of applied mechanical engineering, controls engineering and supporting technicians.
Importantly, the majority of installation works could only be done during periods when the synchrotron was not operational.

Installation of the ‘frontends’ for two new beamlines, Medium Energy X-ray Absorption Spectroscopy (MEX) and Biological Small Angle X-ray Scattering (BioSAX) is now complete with final commissioning tasks on schedule. Completion is expected during the coming Christmas shutdown, according to Senior Engineering Manager Brad Mountford.
The ‘frontend” is the physical conduit that carries powerful synchrotron light from the main storage ring through the shield wall that surrounds the ring.

>Read more on the Australian Synchrotron (ANSTO) website

>Discover the Project BR-GHT here

Analysis of fingermarks with synchrotron techniques provide new insights

A new study by researchers from Curtin University using the infrared (IR) and X-ray fluorescence microscopy (XFM) beamlines at the Australian Synchrotron has provided a better understanding of the chemical and elemental composition of latent fingermarks.

The findings by lead researchers Prof Simon Lewis and Dr Mark Hackett may provide opportunities to optimise current fingermark detection methods or identify new detection strategies for forensic purposes.
Latent fingermarks are generally described as those requiring some process to make them readily visible to the eye. These fingermarks are typically made up of natural skin secretions, along with contaminants (such as food or cosmetics) picked up from various surfaces.
The detection of latent fingermarks is often crucial in forensic investigations, but this is not always a straightforward task. “We know that there are issues in detecting fingermarks as they get older, and also under certain environmental conditions”, said Lewis, whose main research focus is forensic exchange evidence.

“In order to improve our ability to detect fingermarks, we need to understand the nature of fingermark residue, and this includes both the organic and inorganic components. Many chemical components in fingermark residue are present at very low levels, and we don’t know how they are distributed within the fingermark. This is what took us to the Australian Synchrotron.”

>Read more on the Australian Synchrotron at ANSTO website

A little bit of the moon just landed at ANSTO

Research on lunar meteorite and moon crater analogues coincides with Science Week.

Researchers at the Australian Synchrotron are currently collaborating on a particularly rare, other-worldly sample; a lunar meteorite. “Although we do work on the moons of the outer planets, I believe this is our first sample from Earth’s moon, which could be more than four billion years old,” said Dr Helen Brand, planetary geologist and senior beamline scientist at the Australian Synchrotron.

Lunar meteorites are rocks found on Earth that were ejected from the Moon by the impact of an asteroid or another body. “These objects, which originate primarily from the moon’s crust, are extremely rare and precious. Because of their scarcity, scientists often use analogues or man-made versions of meteorites for investigations. “At the moment it is quite exciting as I have two projects relating to actual and analogue lunar objects, both of which are scheduled for the Imaging and Medical Beamline at the Synchrotron,” she said. n, which could be more than four billion years old,” said Dr Helen Brand, planetary geologist and senior beamline scientist at the Australian Synchrotron.

>Read more on the Australian Synchrotron at ANSTO website

Progress on low energy electronics

Soft X-ray experiments used to characterise new thin film topological Dirac Semimetal

A large international collaboration including scientists from Monash University, the ARC Centre for Future Low Energy Electronics (FLEET), the Monash Centre for Anatomically Thin Materials and the Australian Synchrotron reported today in Nature on the development of an advanced material that is able to switch between an electrically conductive state to an insulating state, simply by applying an electric field.
The work represents a step towards the development of a new generation of ultra-low energy electronics at room temperature. 
Co-author Dr Anton Tadich, a beamline scientist at the Soft X-ray beamline and Partner Investigator with FLEET, collaborated with investigators from Monash University, Singapore and Lawrence Berkeley National Lab on the use of photoemission techniques at the Australian Synchrotron X-ray Photoelectron Spectroscopy (XPS) and the Advanced Light Source in the US Angle Resolved Photoelectron Spectroscopy, (ARPES).
The chemical composition and growth mechanisms of thin films of the topological Dirac semi-metal sodium bismuthide Na3Bi on a silicon substrate was investigated using XPS at the Australian Synchrotron’s Soft X-ray beamline.

>Read more on the Australian Synchrotron at ANSTO website

Insights into Titan’s atmosphere

Terahertz/Far Infrared beamlines assisted investigation into possible composition of lower atmosphere of Saturn’s moon Titan.

Although firmly located on earth, the Australian Synchrotron’s Terahertz/Far Infrared beamline (THz/Far IR) is one of three synchrotron facilities in the word able to simulate the extreme conditions of distant planetary worlds.
The most recently reported research using the beamline published in Earth and Space Chemistry, involved recreating the pressure and temperatures environments in the hazy atmosphere surrounding Saturn’s moon Titan.

“We are interested in Titan because it is the most Earth-like of the planetary bodies possessing an atmosphere of mostly nitrogen and methane,” said co-author Rebecca Auchettl (pictured above), a PhD candidate who was supervised by Dr Courtney Ennis, formerly of La Trobe University now at the University of Otago in New Zealand.

>Read more on the Australian Synchrotron at ANSTO website

Image: Co-author Rebecca Auchettl, PhD candidate.

New approach to breast cancer detection

Phase contrast tomography shows great promise in early stages of study and is expected to be tested on first patients by 2020.

An expert group of imaging scientists in Sydney and Melbourne are using the Imaging and Medical Beamline (IMBL) at the Australian Synchrotron as part of ongoing research on an innovative 3D imaging technique to improve the detection and diagnosis of breast cancer.

The technique, known as in-line phase-contrast computed tomography (PCT), has shown advantages over 2D mammography with conventional X-rays by producing superior quality images of dense breast tissue with similar or below radiation dose.
Research led by Prof Patrick Brennan of the University of Sydney and Dr Tim Gureyev at the University of Melbourne with funding from the NHMRC and the support of clinicians in Melbourne including breast surgeon Dr Jane Fox, is now focused on demonstrating the clinical usefulness of the technique.
Together with Associate Professor Sarah Lewis and Dr SeyedamirTavakoli Taba from the University of Sydney heading clinical implementation, the technique is expected to be tested on the first patients at the Australian Synchrotron by 2020.

>Read more on the Australian Synchrotron website

Image: CT reconstruction of 3D image of mastectomy sample revealing invasive carcinoma

Snaphot of molecular mechanism at work in lethal virus

X-ray crystallography at the Australian Synchrotron contributed to major research findings.

Data collected on the macromolecular crystallography beamlines at the Australian Synchrotron has contributed to major research findings on two deadly viruses, Hendra and Nipah, found in Australia, Asia and Africa. The viruses can be transmitted to humans not directly by the bat which is the natural carrier but by an infected animal like horses or pigs.

Beamline scientist, Dr David Aragao (pictured above), a co-author on the paper in Nature Communications, said that obtaining a clear motion picture of key biological process at the molecular level of viruses is often not available with current biomedical techniques.
“However, using X-ray crystallography from data collected on both MX1 and MX2 beamlines at the Australian Synchrotron, we were able to obtain  8  ‘photograph-like’ snapshots of the molecular process that allows the Hendra and Nipah virus to replicate.“

Two authors of the paper, PhD students Kate Smith and Sofiya Tsimbalyuk, who are co-supervised by Aragao and his collaborator Professor of Biochemistry Jade Forwood of the Graham Centre for Agricultural Innovation Charles Sturt University, used the Synchrotron extensively collecting multiple data sets that required extensive refinements over two years to isolate the mechanism of interest.

>Read more on the Australian Synchrotron website

Image: Beamline scientist, Dr David Aragao.

Using uranium to create order from disorder

The first demonstration of reversible symmetry lowering phase transformation with heating.

ANSTO’s unique landmark infrastructure has been used to study uranium, the keystone to the nuclear fuel cycle. The advanced instruments at the Australian Synchrotron and the Australian Centre for Neutron Scattering  have not only provided high resolution and precision, but also allowed in situ experiments to be carried out under extreme sample environments such as high temperature, high pressure and controlled gas atmosphere.

As part of his joint PhD studies at the University of Sydney and ANSTO, Gabriel Murphy has been investigating the condensed matter chemistry of a crystalline material, oxygen-deficient strontium uranium oxide, SrUO4-x, which exhibits the unusual property of having ordered defects at high temperatures.

“Strontium uranium oxide is potentially relevant to spent nuclear fuel partitioning and reprocessing,” said Dr Zhaoming Zhang, Gabriel’s ANSTO supervisor and a co-author on the paper with Prof Brendan Kennedy of the University of Sydney that was published recently in Inorganic Chemistry.
Uranium oxides can access several valence states, from tetravalent— encountered commonly in UO2 nuclear fuels, to pentavalent and hexavalent—encountered in both fuel precursor preparation and fuel reprocessing conditions.
Pertinent to the latter scenario, the common fission daughter Sr-90 may react with oxidised uranium to form ternary phases such as SrUO4.

>Read more on the Australian Synchrotron website

Image: Dr Zhaoming Zhang and Gabriel Murphy.

Advanced imaging technique used to study triggers of tree mortality

Researchers are using advanced imaging technologies similar to those used in hospitals, including micro-computed tomography on the Imaging and Medical beamline (IMBL) at the Australian Synchrotron, to determine how vulnerable our trees are to drought and heatwaves.
A new scientific review published In Nature outlines progress towards understanding the likely risks from droughts and heatwaves that combine to kill millions of trees around the world with spectacular effects on the environment.

Recent drought and heatwave conditions in northern Australia have killed more than 7000ha of mangrove forests, leaving these essential ecosystems stark, grey skeletons of trees. In California, the prolonged drought period has killed more than 100 million trees that increase the intensity of wildfires and impact on the region’s beauty, tourism and environmental health.
Dead trees, of course, cannot store carbon out of the air and the enormous numbers of dead trees release large quantities of stored carbon back into the air as they are burned or decay, further amplifying the effects of rising carbon dioxide.

>Read more on the Australian Synchrotron website

Image: IMBL robot positions the tree for imaging.