Scientists confirm the presence of rare diamond in stony meteorites

Australian and international researchers have used ANSTO’s Australian Synchrotron to confirm the presence of an unusual diamond found in stony meteorites.

The ureilite meteorites contain a rare hexagonal form of diamond, lonsdaleite, that may have been formed shortly after an ancient dwarf planet collided with a large asteroid about 4.5 billion years ago.

The team of scientists from Monash UniversityRMIT UniversityCSIRO, the Australian Synchrotron and Plymouth University confirmed the existence of lonsdaleite and clarified how it was formed in a paper in the Proceedings of the National Academy of Sciences (PNAS) journal. The study was led by geologist Professor Andy Tomkins from Monash University.

Beamline scientists Dr Andrew Langendam and Dr Helen Brand assisted the team with experiments on the powder diffraction beamline.

“Information that indicated the presence of lonsdaleite was gained by other methods but what was needed most was confirmation of lonsdaleite,” explained Dr Langendam.

“Our powder diffraction beamline is able to differentiate complex mineral phases, such as those found in the meteorites.

“X-ray diffraction revealed a series of peaks representing pyroxene, goethite, olivine and lonsdaleite,” he added.

Read more on the ANSTO website

Image: Mineral map highlighting the partial replacement of lonsdaleite by diamond 

Credit: Authors Sequential Lonsdaleite to Diamond Formation in Ureilite Meteorites via In Situ Chemical Fluid/Vapor Deposition PNAS  119 (38) e2208814119

Microscale clues provide insight into cataclysmic Tongan volcanic eruption

Key Points
  • The intensely powerful and destructive Hunga blast was unlike previous events, It was a unique event in that scientists were able to capture the eruption with satellite imagery and other instruments.
  • The Hunga volcano started out with a flat upper surface to a depth of 150 metres before the eruption, which ejected at least 6.5 cubic kilometres of ash and rock and left a deep caldera 250 metres below sea level.
  • Electron microscopy revealed different concentrations of chemicals in the two types of magma that came together and mingled to form distinctive swirling bands in the samples. Infrared beamline analysis techniques provided crucial information about the diffusion of water in the tiny fragments.
  • The chilling effect of the water as the magma fragmented, the concentration of water and the chemical composition of the particles also provided clues about the depth at which the event occurred.

When the Tongan Hunga volcano erupted in January this year, it was a huge explosion with a mass ejection that reached more than 55 kilometres into the atmosphere, causing local fatalities and evacuations. The blast created significant tsunami waves in the Pacific Basin and generated pressure waves that encircled the globe.

Although not a significant inundation,  the impact of the tsunami reached Australia with waves of 82cm at the Gold Coast, 65cm at Port Kembla and 77cm at Eden’s Twofold Bay in NSW.

In an effort to understand why the eruption was so explosive, internationally-recognised volcanologist Prof. Shane Cronin of the University of Auckland and associates rely on beamlines at the Australian Synchrotron to support comprehensive research on the Hunga event.

Two sets of experiments have already been carried on the Imaging and Medical beamline and the Infrared Microspectroscopy beamline, while another investigation is scheduled for the X-ray fluorescence microscopy beamline.

Read more on the ANSTO website

Image: Undersea volcano

Scientists discover that crocodile devoured a baby dinosaur  

Advanced nuclear and synchrotron imaging has confirmed that a 93-million-year-old crocodile found in Central Queensland devoured a juvenile dinosaur based on remains found in the fossilised stomach contents.

The discovery of the fossils in 2010 was made by the Australian Age of Dinosaurs Museum (QLD) in association with the University of New England, who are publishing their research in the journal Gondwana Research.

The research was carried out by a large team led by Dr Matt White of the Australian Age of Dinosaurs Museum and the University of New England.

The crocodile Confractosuchus sauroktonos, which translates as ‘the broken crocodile dinosaur killer’ was about 2 to 2.5 metres in length. ‘Broken’ refers to the fact that the crocodile was found in a massive, shattered boulder.

Early neutron imaging scans of one rock fragment from the boulder detected bones of the small chicken-sized juvenile dinosaur in the gut, an ornithopod that has not yet been formally identified by species.

Senior Instrument Scientist Dr Joseph Bevitt explained that the dinosaur bones were entirely embedded within the dense ironstone rock and were serendipitously discovered when the sample was exposed to the penetrative power of neutrons at ANSTO.

Dingo, Australia’s only neutron imaging instrument, can be used to produce two and three-dimensional images of a solid object and reveal concealed features within it.

“In the initial scan in 2015, I spotted a buried bone in there that looked like a chicken bone with a hook on it and thought straight away that it was a dinosaur,” explained Dr Bevitt.

“Human eyes had never seen it previously, as it was, and still is, totally encased in rock.”

The finding led to further, high-resolution scans using Dingo and the synchrotron X-ray Imaging and Medical Beamline over a number of years.

Read more on the ANSTO website

Image: Dr Joseph Bevitt and Dr Matt White with the sample on the Imaging and Medical beamline at ANSTO’s Australian Synchrotron

Spare time hobbies and interests

Finding ways to relax and recharge your batteries is really important and helps you maintain perspective, particularly during very busy periods at work. Participants in #LightSourceSelfies told us what they like to do in their spare time. This montage, with contributors from the Australian Synchrotron, CHESS, SESAME and the APS, shows the variety of interests that people within the light source community have. If you are looking for a new way to relax and unwind, you might find an idea that appeals to you in this #LightSourceSelfie!

Enjoying your spare time away from light sources!

Nights!

Experimental time at light sources is very precious. When a synchrotron or X-ray Free Electron Laser (XFEL) is in operating mode the goal is to allocate as many experimental shifts to external scientists and in-house research as possible. This includes night shifts! So, how do light source users survive the night shifts? #LightSourceSelfies brings you top tips from scientists based at, or using, 5 light sources in our collaboration – the ESRF, Advanced Light Source (ALS), ANSTO’s Australian Synchrotron, CHESS and the PAL XFEL.

We all love science!

#LightSourceSelfie from users of the Australian Light Source

Marta Krasowska (Associate Professor), Sarah Otto (PhD Student) and Stephanie MacWilliams (Early Career Researcher) are scientists based at the University of South Australia. They share a passion for soft matter research and conduct experiments at ANSTO’s Australian Synchrotron. Their research questions relate to structural ordering in soft matter and its relevance in applications such as food, personal care products, biomaterials and pharmaceuticals.

In their #LightSourceSelfie, Marta, Sarah and Stephanie discuss what attracted them to this area of research, how they felt the first time they conducted experiments at the Australian Synchrotron, the support they receive from the team based at the facility, their top tips for surviving night shifts and how their research will benefit from the new BioSAX beamline, which is part of the synchrotron’s major upgrade. When it came to single words to describe their research, they agreed on “Challenging, unpredictable and super rewarding!”

How some plants evolved to depend on fire for survival

Researchers based at Monash University and the Swedish Museum of Natural History have pioneered the use of nuclear imaging techniques at ANSTO’s Australian Centre for Neutron Scattering to resolve long-standing gaps in knowledge of the evolution of plants, including Australian natives, that adapted to depend on fires.

Their work has highlighted the key role of wildfires* in the evolution of floral ecosystems.

Dr Chris Mays, a Postdoctoral Researcher at the Swedish Museum of Natural History and Research Affiliate at Monash University, has used fossils of plant reproductive structures, like pine cones, to show how they have adapted to fire.

Plants are known to have adapted during two pivotal intervals in their evolutionary history: a mass extinction event in the end Permian period (252 million years ago) and the rise of the flowering plants during the mid-Cretaceous hothouse period  (120–95 million years ago).

“These extreme warming periods were evolutionary ‘bottlenecks’, through which only fire-adapted plants survived. The evolutionary legacy is all around us in Australia, where a huge proportion of the plants today have fire-adaptive traits,” said Mays.

Using neutron tomography on Dingo, the researchers were able to virtually extract images of amber from within fossils and differentiate plant tissues.

“Neutron tomography is an ideal method for non-destructive, three-dimensional imaging of organically preserved, or ‘coalified’, fossil plants. These are the most common types of plant fossils in the rock record,” said Mays.

Because neutrons can easily penetrate through dense sediments, they can be used to see details of extremely fragile fossils, like those of coalified plants, without the need for meticulous extraction. This minimalist approach to fossil preparation ensures that such delicate fossils remain well-preserved in their protective sediments.

The plant fossils are hydrogen-rich, which means they stand out in contrast to the surrounding rock matrix when imaged with high-resolution neutron tomography.

“Neutrons can successfully differentiate fossil plant tissue that is compositionally similar, where other techniques routinely fail,” said Mays.

X-ray tomography on the Imaging and Medical beamline at the Australian Synchrotron was also undertaken to supplement the neutron investigations.

Read more on the ANSTO website

Image: Dr Maggie-Anne Harvey (left) and Dr Andrew Langendam preparing fossil plant specimens on Dingo

Credit: ANSTO

Delivering drugs using nanocrystals

Monash University researchers have used advanced techniques at ANSTO to investigate the production of new, elongated polymer nanocapsules with a high payload of drug nanocrystals to potentially increase drug targetability, and also decrease dosage frequency and side effects.

This method had not been investigated previously and represents a pioneering method of investigation in the field of colloidal science applications for drug delivery.

Nanoparticles have been used to increase the delivery efficiency of cancer therapy because of their biocompatibility, versatility and the easiness of functionalisation.

The team engineered novel elongated polymer nanocapsules, which are unlike the more well-known spherical nanocapsules.

The elongated polymer nanocapsules were made with elongated liposomes or surfactant vesicles and used drug nanocrystals as a template. 

The results provided strong evidence that the elongated structure could be retained, and also confirmed that the loading method to form rod-like drug nanocrystals inside liposomes was a practical solution.

The combination of the high drug payload, in the form of encapsulated nanocrystals, and the non-spherical feature of liposomes represented a more efficient delivery system.

Spherical hollow nanocapsules have been studied extensively, but the formation of elongated nanocapsules containing active pharmaceuticals as therapeutic agents has been previously largely unsuccessful. 

Read more on the ANSTO website

Image: Elongated nanocapsules can be prepared by polymerisation at the surface of elongated liposome templates with drug nanocrystals

Research finds possible key to long term COVID-19 symptoms

Key Points

  • Researchers from La Trobe University have identified a key mechanism that may link COVID-19 infection and lung damage
  • Lung damage is one of the possible long term effects of COVID-19
  • The macromolecular crystallography beamlines at the Australian Synchrotron continue to provide insights into the structural biology of COVID-19 

The Macromolecular and microfocus beamlines at the Australian Synchrotron continue to be an invaluable resource for studies in structural biology relating to COVID-19.

This week researchers from La Trobe University reported that they have identified a key mechanism in how SARS-CoV-2 damages lung tissue.

Some patients report long term-COVID symptoms affecting their breathing for months after recovering from an initial COVID-19 infection.

Read more on ANSTO website

How ventilation might impact blood flow in ventilated preterm babies

A large international collaboration led by researchers from the Hudson Institute for Medical Research and Monash University has revealed that the ventilation of preterm babies to prevent lung collapse could create a risk of brain injury.  

A/Prof Flora Wong, a researcher at Hudson Institute and Monash University, and consultant neonatologist at Monash Children’s Hospital, and a team of physiologists used the Imaging and Medical beamline (IMBL) at the Australian Synchrotron to acquire extremely clear and detailed images of blood vessels in large, preterm clinical models, in an investigation to determine if the pressure of lung ventilation affected blood vessels and blood flow.

A/Prof Wong said the group have shown that higher lung pressure causes engorgement and stretching of the brain blood vessels, which could slow down blood flow in the brain. 

 “This may play a role in preterm brain injury,” she said.

Because of the findings, A/Prof Wong alerted hospitals to carefully monitor their ventilation of preterm babies, who now survive after as few as 23 weeks gestation.

IMBL Principal Scientist Dr Daniel Hausermann, a co-author on the paper published in The Journal of Physiology, said that in vivo CT imaging of dynamic physiological processes, such as blood flow, can be captured quickly in real-time video on the IMBL beamline.

Read more on the Australian synchrotron website

Image: Micro-angiography showing micro-vessels

The performance of materials in extreme environments

Key Points

  • Understanding how materials will perform in extreme environments is crucial to the development of new energy technologies, Australia’s defence capabilities and space exploration
  • ANSTO are leaders in the characterisation of materials from the atomistic to macroscopic scales. This is needed to fully understand performance and service life in extreme environments
  • ANSTO has world-leading infrastructure and materials research expertise to characterise materials for extreme environments

ANSTO researchers investigate how materials behave in extreme environments, providing information that is vital to support the development of our industries.

Extreme environments include situations where materials are exposed to a combination of different conditions, including high temperature, radiation, corrosion and mechanical load.

Read more on the ANSTO website

image: A/Prof Ondrej Muransky describes the capabilities at ANSTO to research materials that operate in extreme environments, such as nuclear reactors

Building knowledge of changes in uranium chemistry

ANSTO’s considerable expertise in characterising uranium-containing compounds has contributed to a new systematic investigation of the origins of atomic structural distortions in a family of actinide compounds.

These compounds are known as rutile-related mixed metal ternary (three-part) uranium oxides. Rutile refers to mineral compounds composed primarily of titanium dioxide.

In research published in Inorganic Chemistry, a large team of researchers used both neutron and synchrotron radiation and theoretical calculations to establish systematically precise and accurate crystal structures and uranium oxidation states in the rutile-related mixed metal ternary uranium oxide systems.

Read more on the ANSTO website

Image:  Dr Zhaoming Zhang, Principal Research Scientist, Nuclear Fuel Cycle, ANSTO

Credit: ANSTO

Understanding what makes COVID-19 more infectious than SARS

Australian and International researchers continue to have rapid access to the macromolecular and microfocus beamlines at the Australian Synchrotron to solve protein structures in the fight against COVID-19.

“Since coming out of a hard lockdown, we are now accepting proposals for other research,” said Principal Scientist Dr Alan Riboldi-Tunnicliffe.

“Because scientists can access the beamline remotely, they do not have to worry about changes to borders and travel restrictions.”

There have been a number of COVID-19 publications, which included structural information about key proteins in the virus, from the beamlines.

Instrument scientist Dr Eleanor Campbell reports that an international team of researchers led by the University of Bristol (UK) have identified a possible cause of SARS-CoV-2’s increased infectivity compared to SARS-CoV (the virus which emerged in China in 2003) , which could provide a target for developing COVID-19 therapies.

Australian collaborators included researchers from the Institute of Molecular Bioscience at the University of Queensland, who sent the samples to the Australian Synchrotron.

Read more on the Australian Synchrotron website

Research to support optimum care for ventilated preterm babies

A large international collaboration led by researchers from the Hudson Institute for Medical Research and Monash University has revealed that the ventilation of preterm babies to prevent lung collapse could create a risk of brain injury.  

A/Prof Flora Wong, a researcher at Hudson Institute and Monash University, and consultant neonatologist at Monash Children’s Hospital, and a team of physiologists used the Imaging and Medical beamline (IMBL) at the Australian Synchrotron to acquire extremely clear and detailed images of blood vessels in large, preterm clinical models, in an investigation to determine if the pressure of lung ventilation affected blood vessels and blood flow.

Read more on the ANSTO website

Image: Micro-angiography showing micro-vessels

Producing less costly, greener hydrogen peroxide

Australian researchers led by the University of New South Wales have used the Australian Synchrotron to understand how the chemical structure of an advanced catalytic material contributes to its stability and efficiency. The approach has the potential to produce hydrogen peroxide (H2O2) in a process that is cost-effective with less harm to the environment.

Hydrogen peroxide is an important chemical that used widely in a range of applications, including wastewater treatment, disinfection, paper/pulp bleaching, semi-conductor cleaning, mining and metal processing, fuel cells and in chemical synthesis.

According to an international market research group, IMARC, the global hydrogen peroxide market size was valued at US$4.0 billion in 2017 and is increasing.

Read more on the ANSTO website

Image: The optimized geometry structures of bare CoN4 moiety and CoN4 moieties with different coverages of epoxy oxygen. The gray, blue, orange and red balls represent C, N, Co and O atoms, respectively [Reprinted with permission by Creative Commons License: Attribution 4.0 International (CC BY 4.0)]

Secrets of spider web strength revealed

An international collaboration between the University of MelbourneUniversity of Bayreuth and ANSTO’s Australian Synchrotron provides the first insights into how the rare silk of the Australian basket-web spider retains its strength and resilient structure— allowing the spider to make a robust and rather exquisite silken basket.  

The silk is so firm and remarkable that it enables the basket web to maintain its structural integrity without any support from the surrounding vegetation.

The insights into physical and chemical properties of this basket-web silk may be useful for the production of artificial spider silks, which have already shown strong potential as an advanced biomimetic material in textile and medical applications.

“The biochemical makeup of the silk thread cross-section, particularly secondary protein structures and complex carbohydrates, was examined on the Infrared Microspectroscopy (IRM) beamline at the Australian Synchrotron,” said beamline scientist and co-author, Dr Pimm Vongsvivut.

Read more on the ANSTO website

Image: Credit:  Hanyl et al, “Free-standing spider silk webs of the thomisid Saccodomus Formivorus are made of composites comprising micro- and submicron fibers,” Scientific Reports10, 17624 (2020)