Understanding reaction pathways leading to MnO2 polymorph formation

Computational driven design of materials has provided guidelines for designing novel materials with desired properties, especially for metastable materials, which may have superior functionalities than its stable counterparts [1]. However, the synthesis of these metastable materials is usually challenging. The current computational approaches are not able to predict reaction pathways passing through intermediate or metastable phases. As a consequence, the synthesis of many compounds still remains Edisonian, meaning that repeated iteration is usually required to find the reaction conditions needed for synthesizing targeted materials with desired properties. To reduce the amount of cost and effort during this discovery process, a predictive theory for directing the synthesis of materials is necessary.

In the recent article “Understanding Crystallization Pathways Leading to Manganese Oxide Polymorph Formation [2]”, researchers from SLAC, LBNL, MIT, Colorado School of Mines, and NREL combined theory and experimental approaches to develop and demonstrate a theoretical framework that guides the synthesis of intermediate/metastable phases. This ab initio-computation based framework calculates the influence of particle size and solution composition on the stability of polymorph (substances having the same composition but different crystallographic structures), and predicts the phases that will appear along the different reaction pathways.

>Read more on the SSRL at SLAC website

Image (extract): (a) Size-dependent phase diagram of MnO2 polymorphs. The three arrows mark the reaction progression from nano-size to bulk at different potassium concentrations. (b-d) The evolution of x-ray scattering pattern with time along [K+] = 0 M (b), 0.2 M (c), and 0.33M (d). The identities and the fractions of the phases are marked in the subfigure to the right. (e-f) Electron beam diffraction patterns of the δ” phase and δ’ phase harvested from [K+] = 0 M and 0.2 M, respectively. See all figures here.