Lattice Coupling conspires in the correlated cuprate high-Tc superconductivity

For the cuprate high temperature superconductivity (high-Tc) research over the past three decades, the biggest challenge is to identify the relevant low energy degrees of freedom that are critical to formulating the correct theoretical model for high-Tc superconductivity. The main difficulty lies in the closeness between various relevant energy scales. For low energy processes that are comparable to the superconducting gap energy ∆sc, there are the spin exchange energy J, the lattice vibration (phonon) energy Ωph, and the van Hove singularity energy E(π,0). However, anomalous isotope effects on Tc and superfluid density in the cuprates cannot be captured by traditional phonon-mediated superconductivity theories. Historically, a purely electronic Hamiltonian – the Hubbard model – was widely regarded to encapsulate all the core physics of the high-Tc phenomena.

In a recent paper published in Science, scientists from Stanford University and from Stanford Institute for Materials and Energy Sciences (SIMES), in collaboration with material scientists from Japan and theoreticians from Japan, the Netherlands, and Berkeley, reinstated the substantial role of the lattice vibration in the cuprate high-Tc superconductivity – however, in a subtle way that is highly intertwined with the electronic correlations. They finely straddled 18 differently hole-doped high-Tc compound Bi2Sr2CaCu2O8+δ within 8% change of hole carrier concentration, a doping range where Tc evolves from 47 K to 95 K through a putative quantum critical point, around which the electronic correlation effect experiences a sudden change. Then systematic experiments were carried out using the angle-resolved photoemission spectroscopy (ARPES) facility at SSRL Beam Line 5-4. Here, the high-resolution ARPES end station provided critical information of both the superconducting gap and the electron-lattice coupling.

>Read more on the Stanford Synchrotron Radiation Lightsource website

Image: Intertwined growth of the superconductivity and the electron-phonon coupling tuned by the hole concentration. The red line is an illustration of the Tc in Bi-2212 (Tcmax = 95 K). The blue shade and line represent the single-layer Bi-2201 system, where the coupling to the B1g mode is weak and T max is only 38 K. The yellow ball represents the optimally doped tri-layer Bi-2223 where Tcmax is 108 K. The top-right inset shows the intertwined relation between the pseudogap and the EPC under strong electronic correlation. The Madelung potential and the lattice stacking along the c-axis are schematically depicted for the single- layer, bi-layer and tri-layer systems. The dark grey blocks represent the CuO2n- plane, and the light grey blocks represent the charge reservoir layers (Ca2+, SrO, BiO+). The orange dots mark the CuO2n- planes that experience to the first order a non-zero out-of-plane electric field.
Credit: Science, doi: 10.1126/science.aar3394

X-rays uncover a hidden property that leads to failure in a lithium-ion battery material

Experiments at SLAC and Berkeley Lab uproot long-held assumptions and will inform future battery design.

Over the past three decades, lithium-ion batteries, rechargeable batteries that move lithium ions back and forth to charge and discharge, have enabled smaller devices that juice up faster and last longer.
Now, X-ray experiments at the Department of Energy’s SLAC National Accelerator Laboratory and Lawrence Berkeley National Laboratory have revealed that the pathways lithium ions take through a common battery material are more complex than previously thought. The results correct more than two decades worth of assumptions about the material and will help improve battery design, potentially leading to a new generation of lithium-ion batteries.

An international team of researchers, led by William Chueh, a faculty scientist at SLAC’s Stanford Institute for Materials & Energy Sciences and a Stanford materials science professor, published these findings today in Nature Materials.
“Before, it was kind of like a black box,” said Martin Bazant, a professor at the Massachusetts Institute of Technology and another leader of the study. “You could see that the material worked pretty well and certain additives seemed to help, but you couldn’t tell exactly where the lithium ions go in every step of the process. You could only try to develop a theory and work backwards from measurements. With new instruments and measurement techniques, we’re starting to have a more rigorous scientific understanding of how these things actually work.”

>Read more on the SLAC website

Image: When lithium ions flow into the battery’s solid electrode – illustrated here in hexagonal slices – the lithium can rearrange itself, causing the ions to clump together into hot spots that end up shortening the battery lifetime.
Credit: Stanford University/3Dgraphic

Direct Observation of the Kinetics of Gas–Solid Reactions

… using in-situ kinetic and spectroscopic techniques.

Copper oxide is a widely used adsorptive material that removes trace amounts of H2S from various process streams via chemical reaction to form copper sulfide. At room temperature the thermodynamics favor a near complete conversion of CuO to copper sulfide in the presence of H2S. However, in application, the extent of conversion of the CuO to copper sulfide during reaction can be influenced by many factors, including the initial crystalline state of the CuO, and the rate at which solid products accumulate on the reactive surfaces or within pores of the CuO particles. This incomplete utilization of CuO is problematic for industrial applications because it typically leads to oversized equipment and/or frequent process shutdowns. Developing fundamental insight at the atomic scale for this reaction could overcome these limitations by providing a rational basis for the design of new materials and by leading to predictive models that allow for current materials to be operated toward their thermodynamic limits. Thus, experiments that combine reaction kinetic testing while also simultaneously capturing chemical and structural changes in the solid phase at multiple length scales are necessary to elucidate the fundamentals of these reactions at various length scales.

Previous studies were successful in semi-quantitatively relating properties of materials to performance in fixed-bed systems, however, differences in performance were often attributed to physical properties at the >10 mm scale (e.g., surface area, pore volume, bulk density). The effects of molecular scale material characteristics (e.g., microscopic shape, metal oxide crystallite size, and surface composition) were rarely investigated, thus, it is difficult to extend the conclusions from these studies across a broad range of conditions and materials.

>Read more on the SSRL at SLAC website

Image (extract): (A) CuO and CuS concentration maps derived from XANES analysis of TXM images of individual CuO particle during reaction with 1000 ppm H2S. (B) Fractional conversion versus time (derived from linear combination fitting of Cu K-edge XANES) of fixed beds of CuO particles consisting of 2 different crystallite sizes (red circles are 2.8 nm and blue squares are 28 nm) and of individual CuO particles. See the entire figure here.

Empowering multicomponent cathode materials for sodium ion batteries

…by exploring three-dimensional compositional heterogeneities

Energy storage devices have revolutionized the modern electronics industry by enabling the widespread application of portable electronic devices. Moreover, these storage devices also have the potential to reduce the dependence on fossil fuels by implementing electric vehicles in the market. To date, lithium ion batteries have dominated the market because of the high energy density delivered by them. However, one should look into the sustenance of such devices because Li is not one of the most abundant metals on Earth’s crust. Thus, developing an alternative to lithium ion batteries has become one of the key issues to ensure the sustainable future of energy storage devices. Sodium ion batteries provide one such alternative. Out of all the components of a battery, cathode materials play one of the key roles in determining the overall performance of such batteries. Unfortunately, sodium-ion batteries have been lagging behind their lithium ion counterpart in terms of performance. Thus, new design strategies must be undertaken in order to improve the performance of cathode materials for sodium ion batteries.

>Read more on the SSRL at SLAC website

Image (extract): Three-dimensional elemental associations of pristine Na0.9Cu0.2Fe0.28Mn0.52O2 studied through transmission x-ray tomography. a) Visualizing the surface elemental associations at different angles with different colors corresponding to different association, and b) 2D cross-sectional association maps showing the bulk elemental associations. [Energy Environ. Sci., DOI: 10.1039/C8EE00309B (2018)] See entire figure here.

Insight into catalysis through novel study of X-ray absorption spectroscopy

An international team has made a breakthrough at BESSY II.

For the first time, they succeeded in investigating electronic states of a transition metal in detail and drawing reliable conclusions on their catalytic effect from the data. These results are helpful for the development of future applications of catalytic transition-metal systems. The work has now been published in Chemical Science, the Open Access journal of the Royal Society of Chemistry.

Many important processes in nature depend on catalysts, which are atoms or molecules that facilitate a reaction, but emerge from it themselves unchanged. One example is photosynthesis in plants, which is only possible with the help of a protein complex comprising four manganese atom sites at its centre. Redox reactions, as they are referred to, often play a pivotal role in these types of processes. The reactants are reduced through uptake of electrons, or oxidized through their release. Catalytic redox processes in nature and industry often only succeed thanks to suitable catalysts, where transition metals supply an important function.

>Read more about on the BESSY II at HZB website

Image: Manganese compounds also play a role as catalysts in photosynthesis.
Credit: HZB

Understanding reaction pathways leading to MnO2 polymorph formation

Computational driven design of materials has provided guidelines for designing novel materials with desired properties, especially for metastable materials, which may have superior functionalities than its stable counterparts [1]. However, the synthesis of these metastable materials is usually challenging. The current computational approaches are not able to predict reaction pathways passing through intermediate or metastable phases. As a consequence, the synthesis of many compounds still remains Edisonian, meaning that repeated iteration is usually required to find the reaction conditions needed for synthesizing targeted materials with desired properties. To reduce the amount of cost and effort during this discovery process, a predictive theory for directing the synthesis of materials is necessary.

In the recent article “Understanding Crystallization Pathways Leading to Manganese Oxide Polymorph Formation [2]”, researchers from SLAC, LBNL, MIT, Colorado School of Mines, and NREL combined theory and experimental approaches to develop and demonstrate a theoretical framework that guides the synthesis of intermediate/metastable phases. This ab initio-computation based framework calculates the influence of particle size and solution composition on the stability of polymorph (substances having the same composition but different crystallographic structures), and predicts the phases that will appear along the different reaction pathways.

>Read more on the SSRL at SLAC website

Image (extract): (a) Size-dependent phase diagram of MnO2 polymorphs. The three arrows mark the reaction progression from nano-size to bulk at different potassium concentrations. (b-d) The evolution of x-ray scattering pattern with time along [K+] = 0 M (b), 0.2 M (c), and 0.33M (d). The identities and the fractions of the phases are marked in the subfigure to the right. (e-f) Electron beam diffraction patterns of the δ” phase and δ’ phase harvested from [K+] = 0 M and 0.2 M, respectively. See all figures here.

X-Ray Experiment confirms theoretical model for making new materials

By observing changes in materials as they’re being synthesized, scientists hope to learn how they form and come up with recipes for making the materials they need for next-gen energy technologies.

Over the last decade, scientists have used supercomputers and advanced simulation software to predict hundreds of new materials with exciting properties for next-generation energy technologies.

Now they need to figure out how to make them.

To predict the best recipe for making a material, they first need a better understanding of how it forms, including all the intermediate phases it goes through along the way – some of which may be useful in their own right.

Now experiments at the Department of Energy’s SLAC National Accelerator Laboratory have confirmed the predictive power of a new computational approach to materials synthesis. Researchers say that this approach, developed at the DOE’s Lawrence Berkeley National Laboratory, could streamline the creation of novel materials for solar cells, batteries and other sustainable technologies.

>Read more on the Stanford Synchrotron Radiation Lightsource at SLAC website

Image: In an experiment at SLAC, scientists loaded ingredients for making a material into a thin glass tube and used X-rays (top left) to observe the phases it went through as it was forming (shown in bubbles). The experiment verified theoretical predictions made by scientists at Berkeley Lab with the help of supercomputers (right).
Credit: Greg Stewart/SLAC National Accelerator Laboratory

Redox-transformation kinetics of aqueous thio-arsenic species…

… determining arsenic sequestration by organic thiol groups of peat.

Arsenic (As) is a toxic metalloid which has attracted the attention of the general public because of its natural toxic concentrations in drinking water of millions of people around the world.  The mobility and bioavailability of As thereby strongly depends on redox conditions, often linked to the redox cycles of sulfur (S), iron (Fe), and carbon (C). In reducing systems such as wetlands (swamps, peatlands, paddy fields etc.) As is thought to be mainly present in its reduced trivalent form as arsenite. Naturally, these systems are rich in natural organic matter (NOM) because mineralization of carbon is delayed under anoxic, reducing conditions. Furthermore sulfur, which acts as a main nutrient for plants, can also be present in its reduced forms as e.g. organic thiol groups in NOM-rich environments after anoxic decomposition of plant debris or reduction of released sulfate.

>Read more on the Stanford Synchrotron Radiation Lightsource (SSRL) website

Figure: (extract) Proposed conceptual model for the As-S chemistry in the minerotrophic peatland Gola di Lago, Switzerland. Scenario 1: arsenate and arsenite prevail as long as no reduced inorganic sulfur is present. Scenario 2: monothioarsenate formation from arsenite and surface-bound zerovalent sulfur species. Scenario 3: formation of higher thiolated arsenates from monothioarsenate under conditions of available free sulfide. (…)  Entire figure and information here
Credit: Besold et al. 2018, ES&T, DOI: 10.1021/acs.est.8b01542, Copyright 2018, American Chemical Society.

Stable solvent for solution-based electrical doping…

… of semiconducting polymer films and its application to organic solar cells.

Controlled and stable electrical doping of organic semiconductors is desirable for the realization of efficient organic photovoltaic (OPV) devices. Thus, progress has been made to understand the fundamental doping mechanisms.1-3 In 2016, Aizawa et al. reported the use of 12-molybdophosphoric acid hydrate (PMA) to induce p-type doping and crosslinking of neat films of poly[N-9’-heptadecanyl-2,7-carbazole-alt-5,5-(4’,7’-di-2-thienyl-2’,1’,3’-benzothiadiazole)](PCDTBT).4 Later on, a more general approach of sequential solution-based doping was presented, by post-process immersion of donor-like polymer films in PMA-nitromethane solutions.5 However, critical to the method is the use of nitromethane, a highly unstable solvent, to dissolve PMA and thus limited the applicability to large-scale fabrication of organic solar cells.

A collaboration between a team of researchers from the Kippelen Research Group at Georgia Tech and the Toney Research Group at SSRL developed a solution-based doping method using the highly stable solvent, acetonitrile. Figure 1a displays the chemicals used in this work. In Figure 1b, the optical properties of poly(3-hexylthiophene-2,5-diyl)(P3HT) films immersed for 30 min in a 0.5 M solution of PMA in acetonitrile (PMA-im-P3HT) were studied by comparing their transmittance spectra against pristine P3HT and P3HT immersed similarly in a 0.5 M solution of PMA in nitromethane. The normalized change of transmittance ΔT T-1 as a function of wavelength (inset of Fig.1b) reveals the same spectral signatures reported for PMA-im-P3HT films when PMA was dissolved in nitromethane. That is, changes in the region where ΔT T-1< 0 correlate with the P3HT polaron bands, and deviations in the region where ΔT T-1> 0 correlate to the bleaching of the main π-π* absorption bands.6 The data suggests electrical p-doping into the depth of the organic film. Figure 1c shows that the performance of PMA-doped OPV devices using PMA in acetonitrile is comparable to that of OPVs made using PMA in nitromethane or MoO3, under simulated AM 1.5G solar illumination. Furthermore, if the light soaking mechanism is used before each measurement, OPVs made using PMA in nitromethane or acetonitrile remain stable for up to 524 h in the air, retaining 80% of their initial power conversion efficiency (PCE).

>Read more on the Standfort Synchrotron Radiation Lightsource website

Figure: (extract) of GIWAXS data as measured on pristine and PMA doped P3HT, when using various solvents to dissolve the PMA. a, Two-dimensional GIWAXS data converted to q-space for pristine P3HT and P3HT immersed in PMA solutions in nitromethane, acetonitrile or ethanol for 60 seconds. b, One-dimensional scattering profiles (out-of-plane and in-plane profiles), obtained from the two-dimensional GIWAXS data.

Scientists find a new way to make novel materials by ‘un-squeezing’

Like turning a snowball back into fluffy snow, a new technique turns high-density materials into a lower-density one by applying the chemical equivalent of ‘negative pressure.’

Some materials can morph into multiple crystal structures with very different properties. For instance, squeezing a soft form of carbon produces diamond, a harder and more brilliant form of carbon. The Kurt Vonnegut novel “Cat’s Cradle” featured ice-nine, a fictional form of water with a much higher melting point than regular ice that threatened to irreversibly freeze all the water on Earth.

These materials are called polymorphs, and they’re commonly made by applying pressure, or squeezing. Scientists looking for new materials would also like to do the opposite – apply “negative pressure” to stretch a material’s crystal structure into a new configuration. In the past, this approach seemed to require negative pressures that are difficult if not impossible to achieve in the lab, plus it risked pulling the material apart.

Now researchers at the Department of Energy’s National Renewable Energy Laboratory (NREL) have found a way to create the equivalent of negative pressure by mixing two materials together under just the right conditions to make an alloy with an airier and entirely different crystal structure and unique properties.

>Read more on the SSRL website

Image: SLAC staff scientists Laura Schelhas and Kevin Stone at an experimental station at the Stanford Synchrotron Radiation Lightsource, where they used X-rays to measure the structure of a novel ‘negative pressure’ material created at NREL.
Credit: Matt Beardsley/SLAC National Accelerator Laboratory

Scientists use machine learning to speed discovery of metallic glass

In a new report, they combine artificial intelligence and accelerated experiments to discover potential alternatives to steel in a fraction of the time.

Blend two or three metals together and you get an alloy that usually looks and acts like a metal, with its atoms arranged in rigid geometric patterns.

But once in a while, under just the right conditions, you get something entirely new: a futuristic alloy called metallic glass that’s amorphous, with its atoms arranged every which way, much like the atoms of the glass in a window. Its glassy nature makes it stronger and lighter than today’s best steel, plus it stands up better to corrosion and wear.

Even though metallic glass shows a lot of promise as a protective coating and alternative to steel, only a few thousand of the millions of possible combinations of ingredients have been evaluated over the past 50 years, and only a handful developed to the point that they may become useful.

Now a group led by scientists at the Department of Energy’s SLAC National Accelerator Laboratory, the National Institute of Standards and Technology (NIST) and Northwestern University has reported a shortcut for discovering and improving metallic glass – and, by extension, other elusive materials – at a fraction of the time and cost.

>Read more on the SLAC website

Image: Fang Ren, who developed algorithms to analyze data on the fly while a postdoctoral scholar at SLAC, at a Stanford Synchrotron Radiation Lightsource beamline where the system has been put to use.
Credit: Dawn Harmer/SLAC National Accelerator Laboratory

Hidden medical text read for the first time in a thousand years

With X-ray imaging at SLAC’s synchrotron, scientists uncovered a 6th century translation of a book by the Greek-Roman doctor Galen.

An influential physician and a philosopher of early Western medicine, Galen of Pergamon was the doctor of emperors and gladiators. One of his many works, “On the Mixtures and Powers of Simple Drugs,” was an important pharmaceutical text that would help educate fellow Greek-Roman doctors.

The text was translated during the 6th century into Syriac, a language that served as a bridge between Greek and Arabic and helped spread Galen’s ideas into the ancient Islamic world. But despite the physician’s fame, the most complete surviving version of the translated manuscript was erased and written over with hymns in the 11th century – a common practice at the time. These written-over documents are known as palimpsests.

An international team of researchers is getting a clear look at the hidden text of the Syriac Galen Palimpsest with an X-ray study at the Stanford Synchrotron Radiation Lightsource (SSRL) at the Department of Energy’s SLAC National Accelerator Laboratory.

>Read more on the Stanford Synchrotron Radiation Lightsource website

Image: Conservators at Stanford University Libraries removed the pages from the leather-bound cover of the book of hymns, and mounted each leaf in an individually fitted, archival mat. The individual mats were placed in an aluminum frame to secure the pages while examining the underlying text with X-rays at the Stanford Synchrotron Radiation Lightsource.
Credit:
Farrin Abbott / SLAC National Accelerator Laboratory

The Molecular Scale Structure of Electrolyte-Metal Oxide Interface

Li-ion batteries (LIBs) are key components of portable electronic devices, as well as in electric vehicles, military and medical equipment, backup power supplies, and even grid storage. However, the energy storage capacity and rate capability of current LIBs is still too low to meet the increasing demand of key markets. For the latter, the properties of the electrolyte-electrode interface play a decisive role.

From a more general point of view, interfaces, or surfaces, are the outer boundary of any condensed matter. Due to the resulting symmetry breaking, the arrangement of atoms or molecules at the interface often varies significantly from that in the bulk. Studies of the molecular scale structural properties of liquids at interfaces are intriguing, as these give insights into the fundamental molecule–molecule and molecule–substrate interactions. Investigations have included layering of ionic liquids [1], layering of metallic [2] and non-metallic liquids [3], and the (potential-dependent) structure of water adsorbed on solid surfaces [4]. However, basic insights into how a non-aqueous electrolyte–salt solution organizes at a solid interface, in particular from experiments, is still missing [5]. In many technological applications, the atomic scale properties of interfaces govern the functionality of the system. A prominent example is the importance of the structure and molecular arrangement of the liquid at the functional solid–liquid interface in batteries. More specifi­cally, in LIBs, the arrangement of the electrolyte molecules directly at the electrode interface, and the electric double layer (EDL) formation are expected to govern the interfacial ion transport during charge/discharge, as well as affect the origin and properties of the solid electrolyte interphase (SEI).

>Read more on the Stanford Synchrotron Radiation Lightsource website

Image: (a) Fresnel-normalized XRR (symbols) of the sapphire/LiPF6:EC:DMC and corresponding model fits (lines). (b) Fit-derived electron density profiles. (c) Comparison of the XRR- and MD-derived (blue) density profiles. The MD-derived profile is smeared by the XRR-derived roughness. All curves are spaced vertically for clarity. (d) Periodicity at the solid/liquid interface vs. LiPF6 concentration. (e) Normalized correlation lengths. (f) Schematic illustration of the proposed origin induced increased layer spacing with increasing salt-concentration.

Structural Mechanisms of Histone Recognition by Histone Chaperones

Chromatin is the complex of DNA and proteins that comprises the physiological form of the genome. Non-covalent interactions between DNA and histone proteins are necessary to compact large eukaryotic genomes into relatively small cell nuclei. The nucleosome is the fundamental repeating unit of chromatin, and is composed of 147bp of DNA wrapped around an octamer of histone proteins: 2 copies of each H2A, H2B, H3 and H4.

Assembly of nucleosomes in the cell requires the coordinated effort of many proteins including ATP-dependent chromatin remodeling enzymes and ATP-independent histone chaperone proteins. Histone chaperones are a large class of proteins responsible for binding the highly basic histone proteins, shielding them from non-specific interactions, facilitating nuclear import of histones, and finally depositing histones onto DNA to form nucleosomes. Despite performing many overlapping functions, histone chaperone proteins are highly structurally divergent. However, nearly all histone chaperones contain highly charged intrinsically disordered regions (IDRs)1. In many cases truncation of these conserved regions results in loss of histone affinity and deposition functions.

>Read more on the Stanford Synchrotron Radiation Lightsource

Image: (extract) SAXS analysis of Npm Core+A2 truncation (1-145) bound to five H2A/H2B dimers. Left: small angle x-ray scattering curve of the complex (purple dots). Simulated SAXS curve from the best scoring structural model shown as a black line. Right: SAXS envelope of the complex (pink) with the best scoring structural model inside. Positioning of H2A/H2B dimers by NMR and SAXS structural restraints. Full image here.

Questioning the universality of the charge density wave nature…

… in electron-doped cuprates

The first superconductor materials discovered offer no electrical resistance to a current only at extremely low temperatures (less than 30 K or −243.2°C). The discovery of materials that show superconductivity at much higher temperatures (up to 138 K or −135°C) are called high-temperature superconductors (HTSC). For the last 30 years, scientists have researched cuprate materials, which contain copper-oxide planes in their structures, for their high-temperature superconducting abilities. To understand the superconducting behavior in the cuprates, researchers have looked to correlations with the charge density wave (CDW), caused by the ordered quantum field of electrons in the material. It has been assumed that the CDW in a normal (non-superconducting) state is indicative of the electron behavior at the lower temperature superconducting state. A team of scientists from SLAC, Japan, and Michigan compared the traits of superconducting and non-superconducting cuprate materials in the normal state to test if the CDW is correlated to superconductivity.

>Read more on the SSRL website

Picture: explanation in detail to read in the full scientific highlight (SSRL website)

 

 

 

SLAC scientists investigate how metal 3D printing can avoid producing flawed parts

The goal of these X-ray studies is to find ways to improve manufacturing of specialized metal parts for the aerospace, aircraft, automotive and healthcare industries.

Scientists at the Department of Energy’s SLAC National Accelerator Laboratory are using X-ray light to observe and understand how the process of making metal parts using three-dimensional (3-D) printing can leave flaws in the finished product – and discover how those flaws can be prevented. The studies aim to help manufacturers build more reliable parts on the spot – whether in a factory, on a ship or plane, or even remotely in space – and do it more efficiently, without needing to store thousands of extra parts.

The work is taking place at the lab’s Stanford Synchrotron Radiation Lightsource (SSRL) in collaboration with scientists from the DOE’s Lawrence Livermore National Laboratory and Ames Laboratory.

The 3-D printing process, also known as additive manufacturing, builds solid, three-dimensional objects from a computer model by adding material layer by layer. The use of plastics and polymers in 3-D printing has advanced rapidly, but 3-D printing with metals for industrial purposes has been more challenging to sort out.

>Read more on the SSRL website

Picture: SLAC staff scientist Johanna Nelson Weker, front, leads a study on metal 3-D printing at SLAC’s Stanford Synchrotron Radiation Lightsource with researchers Andrew Kiss and Nick Calta, back.
Credit: Dawn Harmer/SLAC