A shape-induced orientation phase within 3D nanocrystal solids

Designing nanocrystal (NC) materials aims at obtaining superlattices that mimic the atomic structure of crystalline solids. In such atomic systems, spatially anisotropic orbitals determine the crystalline lattice type. Similarly, in NC systems the building block anisotropy defines the order of the final solid: here, the NC shape governs the final superlattice structure. Yet, in contrast to atomic systems, NC shape-anisotropy induces not only positional, but also orientational order, ranging from full rotational disorder to a stable, fixed alignment of all NCs. This orientational relation is of special interest, as it determines to what extent atomically coherent connections between NCs are possible, thereby enabling complete wave function delocalization within the NC solid.
In addition to predicting the final NC orientation and position structure, the realization of NC materials demands a controllable fabrication process such that the designed order can be produced. Generally, such highly ordered NC superstructures are achieved through solvent evaporation induced self‐assembly on hard substrates. For applications where the 2D nature of this substrates process is limiting, nonsolvent into solvent diffusion, a technique commonly used to grow single crystals of dissolved molecules, is an attractive option. However, the precise influence of self-assembly parameters on the final superlattice outcome remains unknown. In this work, the researchers posed two closely related questions regarding the design of novel free-standing NC materials: (i) how can the NC self-assembly process be controlled to yield highly ordered free-standing supercrystals and (ii) what is the detailed positional and orientational order within the NC solid? A multidisciplinary team of collaborators, including the Austrian Small Angle X-ray Scattering (SAXS) beamline at Elettra, approached this challenge by a combined experimental and computational strategy.

>Read more on the Elettra Sincrotrone Trieste website

Image: Self‐assembly of 3D colloidal supercrystals built from faceted 20 nm Bi nanocrystals is studied by mens of in-situ synchrotron X‐ray scattering, combined with Monte Carlo simulations.