Ferroelectric control of the spin texture in GeTe

Spin-orbit coupling effects in materials with broken inversion symmetry are responsible for peculiar spin textures, giving rise to intriguing phenomena such as intrinsic spin Hall effect. Among these materials, ferroelectrics allow for non-volatile control of the spin degree of freedom through the electrical inversion of the spin texture, based on their reversible spontaneous polarization. Finding suitable ferroelectric semiconductors would be a fundamental achievement towards the implementation of novel electronic and spintronic devices combining memory and computing functionalities.
Germanium Telluride emerges as promising candidate, since theoretically proposed as the father compound of the new class of ferroelectric Rashba semiconductors. Its ferroelectricity provides a non-volatile state variable able to generate and drive a giant bulk Rashbatype spin splitting of the electronic bands. Its semiconductivity and silicon-compatibility allows for the realization of spin-based non-volatile transistors.
A European team of both experimentalists and theoreticians from Italy (Politecnico di Milano, IFN-CNR, CNR-SPIN, CNR-IOM) and Germany (Paul-Drude-Institut für Festkörperelektronik, Universität Würzburg) has demonstrated the ferroelectric control of the Rashba spin texture in GeTe probed by spin and angular resolved photoemission spectroscopy at the Advanced Photoelectric Effect experiments (APE) beamline and supported by NFFA.

>Read more on the Elettra Sincrotrone Trieste website

Image: (a, a’) PFM ferroelectric hysteresis loops and the pristine polarization states for the as-prepared Te- and Ge-terminated GeTe(111) surfaces, respectively. (b, b’) DFT calculations of the k-resolved spin polarization along two high symmetry crystallographic directions. The main bulk Rashba bands are marked as B1 and B2. The black dashed line indicates the wave vector k of SARPES measurements. (c, c’) Spin-polarized currents and spin asymmetries (Px) versus binding energy at the wave vector k. The peaks correspond to the intersection of the Rashba bands B1 and B2 with the vertical dashed line at k. (d, d’) Constant energy maps for the Te- and Ge-terminated surfaces. Blue and red arrows indicate the sense of circulation of spins, opposite for the two opposite ferroelectric polarizations.