X-ray fluorescence imaging could open up new diagnostic possibilities in medicine

Using gold to track down diseases

A high-precision X-ray technique, tested at PETRA III, could catch cancer at an earlier stage and facilitate the development and control of pharmaceutical drugs. The test at DESY’s synchrotron radiation source, which used so-called X-ray fluorescence for that purpose, has proved very promising, as is now being reported in the journal Scientific Reports by a research team headed by Florian Grüner from the University of Hamburg. The technique is said to offer the prospect of carrying out such X-ray studies not only with higher precision than existing methods but also with less of a dose impact. However, before the method can be used in a clinical setting, it still has to undergo numerous stages of development.

The idea behind the procedure is simple: tiny nanoparticles of gold having a diameter of twelve nanometres (millionths of a millimetre) are functionalised with antibodies using biochemical methods. “A solution containing such nanoparticles is injected into the patient,” explains Grüner, a professor of physics at the Centre for Free-Electron Laser Science (CFEL), a cooperative venture between DESY, the University of Hamburg and the Max Planck Society. “The particles migrate through the body, where the antibodies can latch onto a tumour that may be present.” When the corresponding parts of the patient’s body are scanned using a pencil X-ray beam, the gold particles emit characteristic X-ray fluorescence signals, which are recorded by a special detector. The hope is that this will permit the detection of tiny tumours that cannot be found using current methods.

>Read more on the PETRA III at DESY website

Image: Gold nanoparticles spiked with antibodies can specifically attach to tumors or other targets in the organism and can be detected there by X-ray fluorescence.
Credit: Meletios Verras [Source]