Extremely small magnetic nanostructures with invisibility cloak

Future data storage technology

In novel concepts of magnetic data storage, it is intended to send small magnetic bits back and forth in a chip structure, store them densely packed and read them out later. The magnetic stray field generates problems when trying to generate particularly tiny bits. Now, researchers at the Max Born Institute (MBI), the Massachusetts Institute of Technology (MIT) and DESY were able to put an “invisibility cloak” over the magnetic structures. In this fashion, the magnetic stray field can be reduced, allowing for small yet mobile bits. The results were published in Nature Nanotechnology.

For physicists, magnetism is intimately coupled to rotating motion of electrons in atoms. Orbiting around the atomic nucleus as well as around their own axis, electrons generate the magnetic moment of the atom. The magnetic stray field associated with that magnetic moment is the property we know from e.g. a bar magnet we use to fix notes on pinboard. It is also the magnetic stray field that is used to read the information from a magnetic hard disk drive. In today’s hard disks, a single magnetic bit has a size of about 15 x 45 nanometer, about 1.000.000.000.000 of those would fit on a stamp.

One vision for a novel concept to store data magnetically is to send the magnetic bits back and forth in a memory chip via current pulses, in order to store them at a suitable place in the chip and retrieve them later. Here, the magnetic stray field is a bit of a curse, as it prevents that the bits can be made smaller for even denser packing of the information. On the other hand, the magnetic moment underlying the stray field is required to be able to move the structures around.

>Read more on the PETRA III at DESY website

Credit: MIT, L. Caretta/M. Huang [Source]

X-rays reveal L-shape of scaffolding protein

Structural biologists discover unexpected results at PETRA III at DESY in Germany.

An investigation at DESY’s X-ray light source PETRA III has revealed a surprising shape of an important scaffolding protein for biological cells. The scaffolding protein PDZK1 is comprised of four so-called PDZ domains, three linkers and a C-terminal tail. While bioinformatics tools had suggested that PDZK1’s PDZ domains and linkers would behave like beads on a string moving around in a highly flexible manner, the X-ray experiments showed that PDZK1 has a relatively defined L-shaped conformation with only moderate flexibility. The team led by Christian Löw from the Centre for Structural Systems Biology CSSB at DESY and Dmitri Svergun from the Hamburg branch of the European Molecular Biology Laboratory EMBL report their results in the journal Structure.

Similar to metal scaffolding which provides construction workers with access points to a building, scaffolding proteins mediate interactions between proteins situated on the membrane of the human cell. While the molecular structure of each of PDZK1’s four individual PDZ domains has been solved using X-ray crystallography and NMR spectroscopy, the overall arrangement of the domains in the protein as well as their interactions was not yet understood.

>Read more on the PETRA III at DESY website

Image: Artistic shape interpretation of the scaffolding protein PDZK1. (Credit: Manon Boschard)tistic shape interpretation of the scaffolding protein PDZK1.
Credit: Manon Boschard

Shining a new light on biological cells

Combined X-ray and fluorescence microscope reveals unseen molecular details

A research team from the University of Göttingen has commissioned at the X-ray source PETRA III at DESY a worldwide unique microscope combination to gain novel insights into biological cells. The team led by Tim Salditt and Sarah Köster describes the combined X-ray and optical fluorescence microscope in the journal Nature Communications. To test the performance of the device installed at DESY’s measuring station P10, the scientists investigated heart muscle cells with their new method.

Modern light microscopy provides with ever sharper images important new insights into the interior processes of biological cells, but highest resolution is obtained only for the fraction of biomolecules which emit fluorescence light. For this purpose, small fluorescent markers have to be first attached to the molecules of interest, for example proteins or DNA. The controlled switching of the fluorescent dye in the so-called STED (stimulated emission depletion) microscope then enables highest resolution down to a few billionth of a meter, according to principle of optical switching between on- and off-state introduced by Nobel prize winner Stefan Hell from Göttingen.

>Read more on the PETRA III at DESY website

Image: STED image (left) and X-ray imaging (right) of the same cardiac tissue cell from a rat. For STED, the network of actin filaments in the cell, which is important for the cell’s mechanical properties, have been labeled with a fluorescent dye. Contrast in the X-ray image, on the other hand, is directly related to the total electron density, with contributions of labeled and unlabeled molecules. By having both contrasts at hand, the structure of the cell can be imaged in a more complete manner, with the two imaging modalities “informing each other”.
Credit: University of Göttingen, M. Bernhardt et al.

Google Maps for the cerebellum

A team of researchers from Göttingen has successfully applied a special variant of X-ray imaging to brain tissue. With the combination of high-resolution measurements at DESY’s X-ray light source PETRA III and data from a laboratory X-ray source, Tim Salditt’s group from the Institute of X-ray Physics at the Georg August University of Göttingen was able to visualize about 1.8 million nerve cells in the cerebellar cortex. The researchers describe the investigations with the so-called phase contrast tomography in the Proceedings of the National Academy of Sciences (PNAS).
The human cerebellum contains about 80 percent of all nerve cells in 10 percent of the brain volume – one cubic millimeter can therefore contain more than one million nerve cells. These process signals that mainly control learned and unconscious movement sequences. However, their exact positions and neighbourhood relationships are largely unknown. “Tomography in the so-called phase contrast mode and subsequent automated image processing enables the cells to be located and displayed in their exact position,” explains Mareike Töpperwien from the Institute of X-ray Physics at the University of Göttingen, lead author of the publication.

>Read more on the PETRA III at DESY website

Image: Result of the phase contrast X-ray tomography at DESY’s X-ray source PETRA III.
Credit: Töpperwien et al., Universität Göttingen

Enlightening yellow in art

Scientists from the University of Perugia (Italy), CNR (Italy), University of Antwerp, the ESRF and DESY, have discovered how masterpieces degrade over time in a new study with mock-up paints carried out at synchrotrons ESRF and DESY. Humidity, coupled with light, appear to be the culprits.

The Scream by Munch, Flowers in a blue vase by Van Gogh or Joy of Life by Matisse, all have something in common: their cadmium yellow pigment. Throughout the years, this colour has faded into a whitish tone and, in some instances, crusts of the paint have arisen, as well as changes in the morphological properties of the paint, such as flaking or crumbling. Conservators and researchers have come to the rescue though, and they are currently using synchrotron techniques to study in depth these sulphide pigments and to find a solution to preserve them in the long run.

“This research has allowed us to make some progress. However, it is very difficult for us to pinpoint to what causes the yellow to go white as we don’t have all the information about how or where the paintings have been kept since they were done in the 19th century”, explains Letizia Monico, scientist from the University of Perugia and the CNR-ISTM. Indeed, limited knowledge of the environmental conditions (e.g., humidity, light, temperature…) in which paintings were stored or displayed over extended periods of time and the heterogeneous chemical composition of paint layers (often rendered more complex by later restoration interventions) hamper a thorough understanding of the overall degradation process.

>Read more on the ESRF website

Image: Some of the mock-up paints, prepared by Letizia Monico. Credits: C. Argoud.

Helmholtz Association supports ATHENA

ATHENA (“Accelerator Technology HElmholtz iNfrAstructure”) is a new research and development platform focusing on accelerator technologies and drawing on the resources of all six Helmholtz accelerator institutions (DESY, Jülich Research Centre, Helmholtz Centre Berlin, Helmholtz Centre Dresden-Rossendorf HZDR, KIT and GSI with the Helmholtz Institute of Jena). The Helmholtz Association has now decided to pay almost 30 million euros towards ATHENA as a strategic development project. “This decision demonstrates the Helmholtz Association’s strong commitment to developing and supplying ground-breaking new accelerator technologies for solving the future challenges faced by society,” says Helmut Dosch, who is the Chairman of DESY’s Board of Directors and also the spokesperson for the Helmholtz Association’s research division Matter.

Together, these centres want to set up two German flagship projects in accelerator research based on innovative plasma-based particle accelerators and ultramodern laser technology: an electron accelerator at DESY in Hamburg and a hadron accelerator at HZDR. At both facilities, a range of different fields of application are to be developed, ranging from a compact free-electron laser, through novel medical uses to new applications in nuclear and particle physics. As soon as they have reached the necessary level of maturity to be put to practical use in a particular area, new compact devices could be built for use in other Helmholtz centres, as well as in universities and hospitals.

>Read more on the Bessy II at HZB website or the DESY website

World’s strongest bio-material outperforms steel and spider silk

Novel method transfers superior nanoscale mechanics to macroscopic fibres

At DESY’s X-ray light source PETRA III, a team led by Swedish researchers has produced the strongest bio-material that has ever been made. The artifical, but bio-degradable cellulose fibres are stronger than steel and even than dragline spider silk, which is usually considered the strongest bio-based material. The team headed by Daniel Söderberg from the KTH Royal Institute of Technology in Stockholm reports the work in the journal ACS Nano of the American Chemical Society.

The ultrastrong material is made of cellulose nanofibres (CNF), the essential building blocks of wood and other plant life. Using a novel production method, the researchers have successfully transferred the unique mechanical properties of these nanofibres to a macroscopic, lightweight material that could be used as an eco-friendly alternative for plastic in airplanes, cars, furniture and other products. “Our new material even has potential for biomedicine since cellulose is not rejected by your body”, explains Söderberg.

The scientists started with commercially available cellulose nanofibres that are just 2 to 5 nanometres in diameter and up to 700 nanometres long. A nanometre (nm) is a millionth of a millimetre. The nanofibres were suspended in water and fed into a small channel, just one millimetre wide and milled in steel. Through two pairs of perpendicular inflows additional deionized water and water with a low pH-value entered the channel from the sides, squeezing the stream of nanofibres together and accelerating it.

>Read more on the PETRA III at DESY website

Image: The resulting fibre seen with a scanning electron microscope (SEM).
Credit: Nitesh Mittal, KTH Stockholm

Freeze-framing nanosecond movements of nanoparticles

New method allows to monitor fast movements at hard X-ray lasers.

A team of scientists from DESY, the Advanced Photon Source APS and National Accelerator Laboratory SLAC, both in the USA, have developed and integrated a new method for monitoring ultrafast movements of nanoscopic systems. With the light of the X-ray laser LCLS at the research center SLAC in California, they took images of the movements of nanoparticles taking only the billionth of a second (0,000 000 001 s). In their experiments now published in the journal Nature Communications they overcame the slowness of present-day two-dimensional X-ray detectors by splitting individual laser flashes of LCLS, delaying one half of it by a nanosecond and recording a single picture of the nanoparticle with these pairs of X-ray pulses. The tunable light splitter for hard X-rays which the scientists developed for these experiments enables this new technique to monitor movements of nanometer size fluctuations down to femtoseconds and at atomic resolution. For comparison: modern synchrotron radiation light sources like PETRA III at DESY can typically measure movements on millisecond timescales.

The intense light flashes of X-ray lasers are coherent which means that the waves of the monochromatic laser light propagate in phase to each other. Diffracting coherent light by a sample usually results in a so-called speckle diffraction pattern showing apparently randomly ordered light spots. However, this speckle is also a map of the sample arrangement, and movements of the sample constituents result in a different speckle pattern.

>Read more on the DESY website

Image: Scheme of the experiment: An autocorrelator developed at DESY splits the ultrashort X-ray laser pulses into two equal intensity pulses which arrive with a tunable delay at the sample. The speckle pattern of the sample is collected in a single exposure of the 2-D detector
Credit: W. Roseker/DESY

Serial crystallography develops by leaps and bounds at the ESRF

Serial crystallography is a new way of studying macromolecular structures using synchrotron and X-FEL sources around the world.

The Structural Biology group at the ESRF is continuously developing new methods to advance the field. Two articles describing advances made are published today in Acta Crystallographica Section D.

“On the Structural Biology Group beamlines one of the ultimate aims is that users can define protocols for experiments, click ‘go’ and let the experiments run by themselves”, explains Gordon Leonard, head of the Structural Biology group at the ESRF. With this idea in mind and to get as much information as possible from the samples available, the team has already adopted serial crystallography, a technique which involves taking diffraction data from many, sometimes hundreds or thousands, of crystals in order to assemble a complete dataset, piece by piece. Indeed, the members of the group are constantly developing new ways to improve the method through collaboration involving scientists from the ESRF, DESY, the Hamburg Centre for Ultrafast Imaging, the European X-FEL and the University of Hamburg.

>Read more on the European Synchrotron website

Image: Daniele de Sanctis on the ID29 beamline.
Credit: S. Candé.

Scientists create “Swiss army knife” for electron beams

Pocket accelerator combines four functions in one device 

DESY scientists have created a miniature particle accelerator for electrons that can perform four different functions at the push of a button. The experimental device is driven by a Terahertz radiation source and can accelerate, compress, focus and analyse electron bunches in a beam. Its active structures measure just a few millimetres across. The developers from the Center for Free-Electron Laser Science (CFEL) present their “Segmented Terahertz Electron Accelerator and Manipulator” (STEAM) in the journal Nature Photonics. Terahertz radiation is located between microwaves and the infrared in the electromagnetic spectrum.

One of the central features of the device is its perfect timing with the electron beam. The scientists achieve this by using the same laser pulse to generate an electron bunch and to drive the device. “To do this, we take an infrared laser pulse and split it up,” explains first author Dongfang Zhang from the group of Franz Kärtner at CFEL. “Both parts are fed into nonlinear crystals that change the laser wavelength: For the generation of an electron bunch the wavelength is shifted into the ultraviolet and directed onto a photocathode where it releases a bunch of electrons. For STEAM the wavelength is shifted into the Terahertz regime. The relative timing of the two parts of the original laser pulse only depends on the length of the path they take and can be controlled very precisely.”

This way, the scientists can control with ultra-high precision, what part of the Terahertz wave an electron bunch hits when it enters the device. Depending on the arrival time of the electron bunch, STEAM performs its different functions. “For instance, a bunch that hits the negative part of the Terahertz electric field is accelerated,” explains Zhang. “Other parts of the wave lead to focusing or defocusing of the bunch or to a compression by a factor of ten or so.” While compression means the electron bunch gets shorter in the direction of flight, focusing means it shrinks perpendicular to the direction of flight.

>Read more on the PETRA III at DESY website

Image: The mini accelerator STEAM (centre) is driven by Terahertz radiation (yellow, coming from both sides). It can accelerator, compress, focus and analyse the incident electron bunches (blue).
Credit: DESY, Lucid Berlin

Edges and corners increase efficiency of catalytic converters

X-rays reveal oxide islands on noble metal nanoparticles

Catalytic converters for cleaning exhaust emissions are more efficient when they use nanoparticles with many edges. This is one of the findings of a study carried out at DESY’s X-ray source PETRA III. A team of scientists from the DESY NanoLab watched live as noxious carbon monoxide (CO) was converted into common carbon dioxide (CO2) on the surface of noble metal nanoparticles like those used in catalytic converters of cars. The scientists are presenting their findings in the journal Physical Review Letters. Their results suggest that having a large number of edges increases the efficiency of catalytic reactions, as the different facets of the nanoparticles are often covered by growing islands of a nano oxide, finally rendering these facets inactive. At the edges, the oxide islands cannot connect, leaving active sites for the catalytic reaction and an efficient oxygen supply.
Catalytic converters usually use nanoparticles because these have a far greater surface area for a given amount of the material, on which the catalytic reaction can take place. For the study presented here, the scientists at DESY’s NanoLab grew platinum-rhodium nanoparticles on a substrate in such a way that virtually all the particles were aligned in the same direction and had the same shape of truncated octahedrons (octahedrons resemble double pyramids). The scientists then studied the catalytic properties of this sample under the typical working conditions of an automotive catalytic converter, with different gaseous compositions in a reaction chamber that was exposed to intense X-rays from PETRA III on the P09 beamline.

>Read more on the PETRA III at DESY website

Image: With increasing oxygen (red) concentration, an oxide sandwich forms on the surface of the metallic nanoparticles, inhibiting the desired reaction of carbon monoxide to carbon dioxide. At the edges, however, the oxide sandwich brakes up, leaving free active sites for catalysis. The more edges the nanoparticles posses, the more efficient will the catalytic converter work.
Credit: DESY, Lucid Berlin

Scientists observe nanowires as they grow

X-ray experiments reveal exact details of self-catalysed growth for the first time

At DESY’s X-ray source PETRA III, scientists have followed the growth of tiny wires of gallium arsenide live. Their observations reveal exact details of the growth process responsible for the evolving shape and crystal structure of the crystalline nanowires. The findings also provide new approaches to tailoring nanowires with desired properties for specific applications. The scientists, headed by Philipp Schroth of the University of Siegen and the Karlsruhe Institute of Technology (KIT), present their findings in the journal Nano Letters. The semiconductor gallium arsenide (GaAs) is widely used, for instance in infrared remote controls, the high-frequency components of mobile phones and for converting electrical signals into light for fibre optical transmission, as well as in solar panels for deployment in spacecraft.

To fabricate the wires, the scientists employed a procedure known as the self-catalysed Vapour-Liquid-Solid (VLS) method, in which tiny droplets of liquid gallium are first deposited on a silicon crystal at a temperature of around 600 degrees Celsius. Beams of gallium atoms and arsenic molecules are then directed at the wafer, where they are adsorpted and dissolve in the gallium droplets. After some time, the crystalline nanowires begin to form below the droplets, whereby the droplets are gradually pushed upwards. In this process, the gallium droplets act as catalysts for the longitudinal growth of the wires. “Although this process is already quite well established, it has not been possible until now to specifically control the crystal structure of the nanowires produced by it. To achieve this, we first need to understand the details of how the wires grow,” emphasises co-author Ludwig Feigl from KIT.

>Read more on the FLASH and PETRA III at DESY website

Image: A single nanowire, crowned by a gallium droplet, as seen with the scanning electron microscope (SEM) of the DESY NanoLab.
Credit: DESY, Thomas Keller

Liquid crystal molecules form nano rings

Quantised self-assembly enables design of materials with novel properties

At DESY’s X-ray source PETRA III, scientists have investigated an intriguing form of self-assembly in liquid crystals: When the liquid crystals are filled into cylindrical nanopores and heated, their molecules form ordered rings as they cool – a condition that otherwise does not naturally occur in the material. This behavior allows nanomaterials with new optical and electrical properties, as the team led by Patrick Huber from Hamburg University of Technology (TUHH) reports in the journal Physical Review Letters.

The scientists had studied a special form of liquid crystals that are composed of disc-shaped molecules called discotic liquid crystals. In these materials, the disk molecules can form high, electrically conductive pillars by themselves, stacking up like coins. The researchers filled discotic liquid crystals in nanopores in a silicate glass. The cylindrical pores had a diameter of only 17 nanometers (millionths of a millimeter) and a depth of 0.36 millimeters.

There, the liquid crystals were heated to around 100 degrees Celsius and then cooled slowly. The initially disorganised disk molecules formed concentric rings arranged like round curved columns. Starting from the edge of the pore, one ring after the other gradually formed with decreasing temperature until at about 70 degrees Celsius the entire cross section of the pore was filled with concentric rings. Upon reheating, the rings gradually disappeared again.

>Read more on the PETRA III at Desy website

Image: Stepwise self-organisation of the cooling liquid crystals. (Extract, see the entire image here)
Credit: A. Zantop/M. Mazza/K. Sentker/P. Huber, Max-Planck Institut für Dynamik und Selbstorganisation/Technische Universität Hamburg; Quantized Self-Assembly of Discotic Rings in a Liquid Crystal Confined in Nanopores, Physical Review Letters, 2018; CC BY 4.

 

Record number of participants at User Meeting

Celebrating a year of glorious firsts and outlining future developments

“Welcome to the first European XFEL user meeting with actual users!” said Martin Meedom Nielsen, head of the European XFEL council as he opened the three day event on 24 January in front of a packed lecture hall on the DESY campus in Hamburg. With 1200 registered participants from ca. 100 institutions from 30 countries, this year’s joint European XFEL and DESY photon science users’ meeting, the first since operation began, was the biggest yet.

Meedom Nielsen and European XFEL Managing Director Robert Feidenhans’l started the meeting by summarizing the achievements and developments of the last year and thanking everyone who had contributed to the facility’s success. “It has been a fantastic year,” said Feidenhans’l looking back on his first year as director of the facility, “a tough year and we have worked really hard, but a fantastic year.” “2017 was a year of glorious firsts” said Meedom Nielsen, highlighting especially the facility’s inauguration in September and the beams of laser light that shone across the city to mark the occasion. “Hamburg was shining for European XFEL, and European XFEL was shining back” he said.

>Read more on the European XFEL website

 Photo Credit: European XFEL

 

1200 participants at annual users’ meeting

Record number of attendees at the joint DESY and European XFEL event

The joint meeting of users of DESY’s research light sources and the European XFEL X-ray laser once again drew a record number of attendees to Hamburg. Some 1200 participants from nearly 100 institutions from around 30 countries have registered for the three-day event (24-26 January) held at DESY, more than ever before. A particular highlight this year is the beginning of scientific user operation at the European XFEL, from which first results were presented.

“The users’ meeting in Hamburg is the largest in the world for research with X-ray light sources, and we are very proud of that,” emphasised DESY Director Helmut Dosch. “The tremendous interest reflects the importance of these unique research tools for all natural sciences and beyond.” DESY’s research director for photon science, Edgar Weckert, added: “With the X-ray lasers FLASH and European XFEL and the storage-ring-based X-ray source PETRA III, the metropolitan region offers a worldwide unique combination of high-intensity research light sources that serve a wide range of disciplines, from biology and medicine to energy, material and earth science to physics, chemistry and even art history.”

Image: DESY, Axel Heimken

Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how important bioinorganic electron transfer systems operate. Using a combination of very different, time-resolved measurement methods at DESY’s X-ray source PETRA III and other facilities, the scientists were able to show that so-called pre-distorted states can speed up photochemical reactions or make them possible in the first place. The group headed by Sonja Herres-Pawlis from the RWTH Aachen University  Michael Rübhausen from the University of Hamburg and Wolfgang Zinth from Munich’s Ludwig Maximilian University, is presenting its findings in the journal Nature Chemistry.

The scientists had studied the pre-distorted, “entatic” state using a model system. An entatic state is the term used by chemists to refer to the configuration of a molecule in which the normal arrangement of the atoms is modified by external binding partners such that the energy threshold for the desired reaction is lowered, resulting in a higher speed of reaction. One example of this is the metalloprotein plastocyanin, which has a copper atom at its centre and is responsible for important steps in the transfer of electrons during photosynthesis. Depending on its oxidation state, the copper atom either prefers a planar configuration, in which all the surrounding atoms are arranged in the same plane (planar geometry), or a tetrahedral arrangement of the neighbouring ligands. However the binding partner in the protein forces the copper atom to adopt a sort of intermediate arrangement. This highly distorted tetrahedron allows a very rapid shift between the two oxidation states of the copper atom.

>Read more on the PETRA III website

Image Caption: Entatic state model complexes optimize the energies of starting and final configuration to enable fast reaction rates (illustrated by the hilly ground). The work demonstrates that the entatic state principle can be used to tune the photochemistry of copper complexes.
Credit: RWTH Aachen, Sonja Herres-Pawlis