Soft X-ray experiments used to characterise new thin film topological Dirac Semimetal
A large international collaboration including scientists from Monash University, the ARC Centre for Future Low Energy Electronics (FLEET), the Monash Centre for Anatomically Thin Materials and the Australian Synchrotron reported today in Nature on the development of an advanced material that is able to switch between an electrically conductive state to an insulating state, simply by applying an electric field.
The work represents a step towards the development of a new generation of ultra-low energy electronics at room temperature.
Co-author Dr Anton Tadich, a beamline scientist at the Soft X-ray beamline and Partner Investigator with FLEET, collaborated with investigators from Monash University, Singapore and Lawrence Berkeley National Lab on the use of photoemission techniques at the Australian Synchrotron X-ray Photoelectron Spectroscopy (XPS) and the Advanced Light Source in the US Angle Resolved Photoelectron Spectroscopy, (ARPES).
The chemical composition and growth mechanisms of thin films of the topological Dirac semi-metal sodium bismuthide Na3Bi on a silicon substrate was investigated using XPS at the Australian Synchrotron’s Soft X-ray beamline.