2 for the price of 1: how double ionization becomes an efficient process

Double ionization is a unique mechanism where two electrons are simultaneously emitted from an atom or molecule. Typically, it’s a very weak process occurring only a few percent of the time compared to single ionization where only one electron is emitted. This is due to double ionization requiring the correlated action of two electrons hit by an energetic photon or particle. However, in a recent experiment, is has been shown that double ionization doesn’t necessarily need to be a minor effect and can even be the primary ionization mechanism.
The enhancement is likely due to double ionization proceeding through a new type of energy transfer process termed double intermolecular Coulombic decay, or dICD, for short. To experimentally observe this mechanism, dimers consisting of two alkali metal atoms were attached to the surface of helium nanodroplets. The dICD process, schematically shown in Fig. 1, occurs through an electronically excited helium atom (red), produced by synchrotron radiation, interacting with the neighboring alkali dimer (blue and white) resulting in energy transfer and double ionization. To distinguish dICD from other processes, the kinetic energies of the emitted electrons were measured in coincidence with their alkali ion counterparts.

>Read more on the Elettra website

Image: schematic view of double Intermolecular Coulombic decay (dICd).