First commissioning results for insertion devices published

The intense X-ray light for each of the MAX IV beamlines is generated when fast electrons fly through an array of magnets, placed in a so-called insertion device.

In a recent report, our insertion device team present the commissioning results for the first nine of these beamline specific instruments.
At synchrotrons like MAX IV, we accelerate electrons to velocities close to the speed of light. The electrons are injected into storage rings where they travel turn after turn inside a vacuum tube, guided by the strong forces of hundreds of carefully tuned magnets. At certain places along the electron path, the magnets are arranged in arrays called insertion devices that make the electrons wiggle from side to side as they fly through. When the electrons perform this motion, they emit energy in the form of intense X-rays. Each beamline needs its dedicated insertion device, built to produce X-rays optimised for the measurement techniques performed there.
The insertion device team have now published the first commissioning results. At the time the report was written, twelve insertion devices were installed, and nine successfully commissioned to deliver according to specifications. Six of them have been built in-house, and two are transferred from the old MAX-lab and refurbished. The remaining insertion devices come from Hitachi and our French synchrotron colleague SOLEIL.

>Read more on the MAX IV Laboratory website