Helmholtz International Fellow Award for N. Mårtensson

The Helmholtz Association has presented the Swedish physicist Nils Mårtensson with a Helmholtz International Fellow Award. 

The synchrotron expert of the University of Uppsala, who heads the nobel comitee for physics, cooperates closely with the HZB-Institute Methods and Instrumentation for Synchrotron Radiation Research. Nils Mårtensson is a professor at Uppsala University. He directed the development of the Swedish synchrotron radiation source Max IV and received a grant from the European Research Council (ERC) in 2013. Mårtensson is a member of the Swedish Academy of Sciences and chairman of the Nobel Committee for Physics. At HZB, he cooperates with Alexander Föhlisch’s team at HZB-Institute Methods and Instrumentation for Synchrotron Radiation Research. Together they run the Uppsala Berlin Joint Laboratory (UBjL) to further develop methods and instruments.

Image: Nils Mårtensson, University of Uppsala, cooperates closely with HZB.

Linac team has reached major milestones

A big milestone was reached for the MAX IV linear accelerator end of May 2018.

The electron bunches accelerated in the linac was compressed to a time duration below 100 femtoseconds (fs). That means that they were shorter than 1*10^-13s. In fact, we could measure a pulse duration as low as 65 fs FWHM.

The RMS bunch length was then recorded at 32 fs. These results were achieved using only the first of the 2 electron bunch compressors in the MAX IV linac and shows not only that we can deliver short electron bunches, but also that the novel concept adopted in the compressors is working according to theory and simulations.

The ultra-short electron pulses are used to create X-ray pulses with the same short time duration in the linac based light source SPF (Short Pulse Facility). These bursts of X-rays can then be used to make time resolved measurements on materials, meaning you can make a movie of how reactions happen between parts of a molecule.

>Read more on the MAX IV Laboratory website

Picture: Linac team at MAX IV.

First serial crystallography experiments performed at BioMAX

BioMAX has successfully performed the first serial crystallography experiments at the beamline. This new method is performed at room temperature which allows structural biologists to study their molecules at more biologically relevant conditions. The technique can also be used on smaller crystals which will alleviate some of the restrictions for molecules such as membrane proteins, that do not typically form large crystals. Eventually, it is hoped that this technique will allow users at the BioMAX and MicroMAX beamlines to take snapshots of the dynamic states of proteins in rapid succession giving a dynamic view of protein movement and activity.

The serial crystallography technique promises to be very useful to users of both synchrotrons and XFELs. Over the course of one experiment, users were able to measure between 20 and 50 crystals every second, resulting in 20 TB of data from just 3 proteins. BioMAX hopes to quickly master this complex technique in order to offer it to users as soon as possible. It also gives us a glimpse of what will be possible at the newly funded MicroMAX beamline.

>Read more on the MAX IV Laboratory website

Image: BioMAX serial crystallography setup using a High Viscosity Extrusion (HVE) injector specially designed for the BioMAX endstation by Bruce Doak of the Max Planck Institute for Medical Research, Heidelberg, and fabricated at that institute.

The quest for atomic perfection in semiconductor devices

A research team, including scientists from MAX IV have reported in Nature Communications that the quest for atomic perfection in semiconductor devices was based on an oversimplified model.

Semiconductors are the fundamental building blocks of all modern electronics. Improvements to these materials could affect everything from the clock on our microwave to supercomputers used to crunch big data. The search to make them better involves looking at atomic level changes in semiconductor materials in order to understand how they could be improved, and even made perfect.

The problem with semiconductors and the way they are manufactured is that they need to be processed with metal contacts and thin insulating layers, and the interface between the semiconductor and these contacts contains a lot of defects which hamper device performance. If scientists can find a way to reduce the defects or eliminate them completely, then semiconductors could conceivably become faster and smaller. The problem is, these defects occur on the atomic scale and are very difficult to measure.

Scientists working at Max Lab, the predecessor to the newly built MAX IV, together with physicists from Lund University used the SPECIES beamline to investigate a common semiconductor synthesis method. Hafnium dioxide was deposited on the surface of indium arsenide and monitored using ambient pressure X-ray photoelectron spectroscopy (APXPS). The scientists were able to monitor the very first atomic layer that was deposited, and monitor the chemical reactions that were occurring as the process was underway.

>Read more on the MAX IV Laboratory website

Video presentation of thesis at NanoMAX

In April 2018, Karolis Parfeniukas (image) defended the first thesis to be fully completed at one of the new MAXIV beamlines called NanoMAX Here’s an interview with Karolis about this project making zone plates to improve focusing of the X-ray beam. Thesis from KTH university, Royal Institute of Technology in Stockholm. PLease watch here the presentation of his research at MAX IV Laboratory:

>Read more here about MAX IV Laboratory

Unravelling the great vision of flies

Fruit flies have a much better vision than what was previously believed in the scientific community.

Researchers from the University of Sheffield (UK), the University of Oulu (Finland), Max IV (Sweden) and University of Szeged (Hungary) are on ID16B trying to find out what happens in the photoreceptors in these insects’ eyes.

“It had always been claimed that fly’s eyesight was very basic, but I couldn’t believe that after so many centuries of evolution this was still the case”, explains Mikko Juusola, head of the Centre for Cognition in Small Brains at Sheffield University. So he started studying vision in fruit flies a decade ago and last year himself and his team debunked previous hypothesis: they proved that insects have a much better vision and can see in far greater detail than previously thought.

Insects’ compound eyes typically consist of thousands of tiny lens-capped ‘eye-units’, which together should capture a low-resolution pixelated image of the surrounding world. In contrast, the human eye has a single large lens, and the retinal photoreceptor array underneath it is densely-packed, which allows the eye to capture high-resolution images. This is why it was believed that insects did not have a good eyesight. Until Juusola came in the picture.

>Read more on the European Synchrotron website

Image: Marko Huttula (University of Oulu, Finland), Jussi-Petteri Suuronen (ESRF) and Mikko Juusola (University of Sheffield, UK) on ESRF’s ID16B beamline. Credit: ©ESRF/C.Argoud

Marianne Liebi winner of Swedish L’Oréal-Unesco For Women in Science 2018

L’Oréal-Unesco For Women in Science Prize is awarded in Sweden for the third time. The purpose of the prize is to pay attention to and reward young women who have shown great potential in science, while offering positive female role-models. Researchers Marianne Liebi, Chalmers, and Ruth Pöttgen, Lund University, get L’Oréal-Unesco For Women in Science Award, supported by Sweden’s young academy 2018.

Marianne Liebi gets the award “for the constructive use of advanced imaging methods for biomaterials with the aim of understanding the connection between molecular and mechanical properties”. Marianne Liebi uses powerful X-ray technology to study how, for example, the smallest building blocks, collagen fibrils, the bone tissue, look and are organised. The goal is to develop a mimicking, biomimetic material, where nature’s own design principles are imitated and applied to develop artificial bone and cartilage.
“It’s important to show that in research, it does not matter where you come from or who you are – what matters is passion and dedication. At best, this kind of award will not be needed in the future, it would be aimed at all young researchers. It would not matter who you were, says Marianne Liebi.

>Read more on the MAXIV Laboratory website

Photo: Researchers Ruth Pöttgen (left), Lund University, and Marianne Liebi (right), Chalmers, get L’Oréal-Unesco For Women in Science Award 2018, supported by Young Academy Sweden.
Credit: Emma Burendahl

FemtoMAX – an X-ray beamline for structural dynamics at a short-pulse facility

The FemtoMAX beamline facilitates studies of the structural dynamics of materials. Such studies are of fundamental importance for key scientific problems related to programming materials using light, enabling new storage media and new manufacturing techniques, obtaining sustainable energy by mimicking photosynthesis, and gleaning insights into chemical and biological functional dynamics. The FemtoMAX beamline utilizes the MAX IV linear accelerator as an electron source. The photon bursts have a pulse length of 100 fs, which is on the timescale of molecular vibrations, and have wavelengths matching interatomic distances (Å). The uniqueness of the beamline has called for special beamline components. This paper presents the beamline design including ultrasensitive X-ray beam-position monitors based on thin Ce:YAG screens, efficient harmonic separators and novel timing tools.

>Read more on the MAXIV Laboratory website

Image: Jörgen Larsson (right) and Christian Disch (left) looking at the first results from the Time-over-threshhold photon-counting detector, an important tool for background free measurements of SAXS and WAXS experiments with samples dissolved in liquids.

MicroMAX, a new beamline for life science

The Novo Nordisk Foundation has generously decided to fund the construction and operation of a new beamline at the MAX IV Laboratory called MicroMAX with 255 million DKK.

MicroMAX has been proposed by the Swedish and Danish research community and will depend on close collaboration with user groups in developing the methods that will be used at MicroMAX. The group of Professor Richard Neutze at the University of Gothenburg has pioneered the research in this area.

– Looking back, I note that in November 2006 MicroMAX was priority #2 in the Swedish Research Council evaluation of the proposal to construct MAX IV Laboratory, says Richard Neutze. Now we have a construction and build-up of the beamline also stretching more than a decade. For the MAX IV project as a whole this is a hugely important decision, to get this level of support from a Danish Foundation. I believe that MicroMAX will be one of the major flagship projects for MAX IV Laboratory. Now we just have to build it, operate it and do some great science…. the fun bit!

>Read more on the MAX IV website

 

MAX-IV at Big Science Business Forum 2018

Join MAX IV at Europe’s new one-stop-shop on the Big Science market

More than 650 delegates from 25 countries, representing more than 250 businesses and organisations from the international Big Science landscape, have already registered for Big Science Business Forum 2018 (BSBF2018). As a selected Affiliated Big Science organisation, MAX IV will be present at BSBF2018, giving a talk on our future procurement plans. With less than two months to go, interested is encouraged to sign up for BSBF2018 now.

Read more on the MAX-IV website

Finnish universities expanding their cooperation with MAX IV

The longstanding collaboration, dating back more than 20 years, of Finnish universities and users to MAX IV laboratory has taken a new phase. Through an agreement signed in the very last days of November, a Finnish university consortium – FIMAX – will expand and deepen this collaboration.

rofessor Marko Huttula from Nano and Molecular Systems Research Unit at the University of Oulu acts as a coordinator of the Finnish participation.

Huttula made his first experiment in MAX-lab on 1998 during the birth of Finnish-Swedish I411 beamline, and now he sees a lot of benefits with the new agreement.

– The engaged long-term relationship between Finland and Sweden in MAX IV synchrotron radiation facility will boost the knowledge of the availability of the possibilities offered for the research. I do believe increasing interests will arise from the traditionally technical fields of R&D as well as from bio and medical research. The need on understanding the structure and functions of materials and processes on the finest detail will definitely make the synchrotron radiation more and more attracting.

Read more on the MAX-IV website

Image: The Finnish cooperation with MAX IV brings new potential users to the synchrotron. Here a photo from the visit in December by Genome of Steel from Oulu University. In the picture, from left to right: Rainer Pärna, beamline manager FinEstBeAMS, Samuli Urpelainen, beamline manager SPECIES, Timo Fabritius, Prof. Process Metallurgy Unit, Head of Unit, Christoph Quitmann, Director MAX IV Laboratory, Mahesh Somani, Adj Prof. Physical Metallurgy Group, Marko Huttula, Prof. Nano and Molecular systems Research Unit, Head of Unit, Antti Kivimäki, beamline scientist FinEstBeAMS, Wei Cao, Adj.Prof. Nano and Molecular Systems Research Unit, Jukka Kömi, Prof. Materials and Production Engineering Unit, Head of Unit, Ville-Valtteri Visuri, PhD student Process Metallurgy.

New capabilities on their way at MAX-IV

Two projects have received funding from the Carl Tryggers Stiftelse för Vetenskaplig Forskning

Atomic force microscopy at MAX IV for studies of novel carbon nanostructures and modern catalysts

Alexei Preobrajenski, Jan Knudsen, Nikolay Vinogradov

Scanning probe techniques such as scanning tunneling microscopy (STM) and atomic force microscopy (AFM) have revolutionized both fundamental and applied studies of solid surfaces in the last few decades by providing atomic scale characterization of the structure and electronic properties of materials. They are particularly informative in combination with a variety of spectroscopic techniques available at modern synchrotron radiation sources.

Development of a Molecular Jet source – en route to tackling science’s Grand Challenges

Noelle Walsh, Conny Såthe, Antti Kivimäki, Rainer Pärna, Maxim Tchaplyguine, Gunnar Öhrwall

Investigating the interaction of light with molecules and the determination of their properties and dynamics is not only essential to the understanding of a myriad of important processes that occur in nature but, it is also important for industrial and technological advancement.

The Low Density Matter (LDM) relevant beamlines at the MAX IV Laboratory will facilitate research projects that focus on a variety of photochemical reaction studies. A high performance molecular jet source is essential to the collection of high quality experimental data – in particular – the collection of high quality electron/ion multi-coincidence data with excellent momentum resolution.

Read more on the MAX-IV website.

image: Claudia Struzzi and Nikolay Vinogradov working in the scanning tunneling microscopy laboratory at MAX IV

First light at FinEstBeAMS – MAX IV

FinEstBeAMS is the first beamline to take light from the 1,5 GeV storage ring. The beamline is funded by an Estonian and Finnish consortium, supported by the EU through the European Regional Development Fund and the Academy of Finland. The photo below shows the undulator light on front end florescence screen.

Read more on the MAX IV website

image: A very happy FinEstBeAMS team – (from left) Antonio Bartalesi, Vladimir Pankratov, Rainer Pärna, Antti Kivimäki and Maximilian Faust. Missing in picture is Liis Reisberg.

Cooking oil and clouds

The complex behaviour of atmospheric aerosols has implications for climate change researc

According to the Intergovernmental Panel on Climate Change (IPCC), the increase in atmospheric aerosols and clouds since pre-Industrial times is one of the largest sources of uncertainty in climate change. Aerosol emissions from cooking are not currently included in European emission figures, yet recent research1 suggests that they contribute nearly 10% of human-related emissions of small particulate matter (PM2.5) in the UK. Now research carried out at Diamond, MAX-lab in Sweden, the University of Bath and the University of Reading published in Nature Communications has demonstrated that atmospheric aerosols can form complex 3D structures, with important implications for their role in climate change.

The work is a collaboration between the atmospheric scientist Dr Christian Pfrang and the biophysical chemist Dr Adam Squires.

>Read more on the diamond website or the MAX-IV website

Image: A levitated droplet at MAX-lab.

Ubiquitous formation of type-I and type-II bulk Dirac cones

… and topological surface states from a single orbital manifold in transition-metal dichalcogenides

Transition-metal dichalcogenides (TMDs) are renowned for their rich and varied properties. They range from metals and superconductorsto strongly spin-orbit-coupled semiconductors and charge-density-wave systems with their single-layer variants one of the most prominent current examples of two-dimensional materials beyond graphene.Their varied ground states largely depend on the transition metal d-electron-derived electronic states, on which the vast majority of attention has been concentrated to date.

>Read more on the Elettra website.

Image: Chalcogen-derived topological ladder in PdTe2.(a) Orbitally-resolved bulk electronic structure of PdTe2, indicating dominantly chalcogen-derived orbital character for the states in the vicinity of the Fermi level. (b) The measured out-of-plane dispersion together with the calculated band structure. Measured (c) and calculated (d) in-plane dispersion. (e,f) Spin-resolved energy distribution curves along the lines shown in (c).