A new molecule could help put the STING on cancer

The protein STING (stimulator of interferon genes) is a component of the innate immune system. It plays a major role in the immune response to cancer, and abnormal STING signaling has been shown to be associated with certain cancers. Immunomodulatory approaches using agonists to target STING signaling are therefore being investigated as anticancer treatments. However, the compounds in clinical trials typically are injected intratumorally in patients with solid cancers. In this study, researchers discovered a novel STING agonist, known as an amidobenzimidazole (ABZI), which can be given by intravenous injection and could therefore potentially open up its evaluation as a treatment for hard-to-reach cancers. Using x-ray diffraction data collected at the U.S. Department of Energy’s Advanced Photon Source (APS), researchers from GlaxoSmithKline (GSK) investigated ABZI compounds and STING. Their results, published in the journal Nature, may have important implications for anticancer immunotherapy.

STING is a protein that mediates innate immunity, and one function of the STING signaling pathway is in mobilizing an immune response against tumors. STING proteins can be activated by cyclic dinucleotides, small molecules that are made by the cytosolic DNA sensor, cGAS, upon sensing of DNA leaking out of the nucleus as a result of DNA damage, including that which might be associated with cancer development.

>Read more on the Advanced Photon Source at Argonne National Lab.

Figure: X-ray crystal structure of the STING protein bound to one of the new molecules.