How a soil microbe could rev up artificial photosynthesis

Researchers discover that a spot of molecular glue and a timely twist help a bacterial enzyme convert carbon dioxide into carbon compounds 20 times faster than plant enzymes do during photosynthesis. The results stand to accelerate progress toward converting carbon dioxide into a variety of products.

Plants rely on a process called carbon fixation – turning carbon dioxide from the air into carbon-rich biomolecules ­– for their very existence. That’s the whole point of photosynthesis, and a cornerstone of the vast interlocking system that cycles carbon through plants, animals, microbes and the atmosphere to sustain life on Earth. 

But the carbon fixing champs are not plants, but soil bacteria. Some bacterial enzymes carry out a key step in carbon fixation 20 times faster than plant enzymes do, and figuring out how they do this could help scientists develop forms of artificial photosynthesis to convert the greenhouse gas into fuels, fertilizers, antibiotics and other products.

Now a team of researchers from the Department of Energy’s SLAC National Accelerator Laboratory, Stanford University, Max Planck Institute for Terrestrial Microbiology in Germany, DOE’s Joint Genome Institute (JGI) and the University of Concepción in Chile has discovered how a bacterial enzyme – a molecular machine that facilitates chemical reactions – revs up to perform this feat.

Rather than grabbing carbon dioxide molecules and attaching them to biomolecules one at a time, they found, this enzyme consists of pairs of molecules that work in sync, like the hands of a juggler who simultaneously tosses and catches balls, to get the job done faster. One member of each enzyme pair opens wide to catch a set of reaction ingredients while the other closes over its captured ingredients and carries out the carbon-fixing reaction; then, they switch roles in a continual cycle.  

Read more on the SLAC website

Discovered: An easier way to create “Flexible Diamonds”

As hard as diamond and as flexible as plastic, highly sought-after diamond nanothreads would be poised to revolutionize our world—if they weren’t so difficult to make. A team of scientists led by Samuel Dunning and Timothy Strobel of the Carnegie Institution for Science using high-brightness x-rays from the U.S. Department of Energy’s (DOE’s) Advanced Photon Source developed an original technique that predicts and guides the ordered creation of strong, yet flexible, diamond nanothreads, surmounting several existing challenges.  The innovation will make it easier for scientists to synthesize the nanothreads—an important step toward applying the material to practical problems in the future. The work was published in the Journal of the American Chemical Society.

Diamond nanothreads are ultra-thin, one-dimensional carbon chains, tens of thousands of times thinner than a human hair. They are often created by compressing smaller carbon-based rings together to form the same type of bond that makes diamonds the hardest mineral on our planet. However, instead of the three-dimensional carbon lattice found in a normal diamond, the edges of these threads are “capped” with carbon-hydrogen bonds, which make the whole structure flexible.

Dunning explains: “Because the nanothreads only have these bonds in one direction, they can bend and flex in ways that normal diamonds can’t.”

Scientists predict that the unique properties of carbon nanothreads will have a range of useful applications from providing sci-fi-like scaffolding on space elevators to creating ultra-strong fabrics. However, scientists have had a hard time creating enough nanothread material to actually test their proposed superpowers.

Read more on the APS website

Image: The starting sample of pyridazine—a six atom ring made up of four carbons and two nitrogens—changes under pressure as diamond nanothread formation progresses. The first and last images show that there has been a permanent color change between the samples after thread formation. The images don’t show individual threads, but “bulk” samples of pyridazine during compression, each around 40 microns thick with a 180-micron diameter.

Credit: Samuel Dunning

Brilliant people working towards a common goal

It’s #LoveYourDataWeek so it’s fitting that this week’s #LightSourceSelfie features a data expert. Mathew Cherukara leads the Computational X-ray Science Group at the Advanced Photon Source (APS) at Argonne National Laboratory near Chicago.

Mathew, who is from Kerala in India, works with his colleagues to develop the computational tools, algorithms and machine learning models used to analyse data from the beamlines at the APS. The first time Mathew saw a light source he recalls, “I couldn’t believe that science on this scale was being done every single day”. Mathew also talks about the fact that, after the APS upgrade, the data rates and computational needs will increase 100 to 1,000 times. For Mathew, the best thing about working at a light source is all the brilliant people working towards a common goal. When Mathew isn’t working, he enjoys taking long walks with his dog and we’re treated to a very cute dog moment at the end of the video #LoveYourDog!

APS #LightSourceSelfie

Spare time hobbies and interests

Finding ways to relax and recharge your batteries is really important and helps you maintain perspective, particularly during very busy periods at work. Participants in #LightSourceSelfies told us what they like to do in their spare time. This montage, with contributors from the Australian Synchrotron, CHESS, SESAME and the APS, shows the variety of interests that people within the light source community have. If you are looking for a new way to relax and unwind, you might find an idea that appeals to you in this #LightSourceSelfie!

Enjoying your spare time away from light sources!

Developing new alloys for hydrogen fuel and catalysis

An alloy is a metal that contains two or three different elements. Steel, for instance, is an alloy of iron and carbon that offers increased strength as a building material.

By mixing more elements together, scientists hope to create new and improved alloys with increased strength and improved corrosion resistance, which could help many industry sectors to reduce costs.

“The trouble is that when you try to make a traditional alloy with more than a couple of elements, the elements tend to separate from each other and clump together,” said David Morris, a PhD student in the Department of Chemistry at the Dalhousie University.

That’s why his research team is interested in alloys with five or more elements that have a highly disordered nature. This chaotic property causes the elements to disperse throughout the mixture and prevent clumping. “You can get alloys with elements that wouldn’t usually go together,” he said.

Morris and his colleagues, including Liangbing Hu’s group from the University of Maryland who synthesized the samples using a special carbothermal shock method, are investigating two alloy samples, one made of five elements and another with fifteen.

“Early experiments suggested that the five-element alloy has high catalytic activity for ammonia decomposition, a process used to make hydrogen fuel, but they potentially have all kinds of applications,” he said.

The team gathered data at the Advanced Photon Source (APS) in Illinois, thanks to the facility’s partnership with the Canadian Light Source (CLS) at the University of Saskatchewan. Using synchrotron light, Morris could analyze each element in their samples separately and spot the differences in the structures of the two alloys.

The researchers discovered that the fifteen-element alloy had some elements that showed oxidation and the length of some of the bonds between them increased. These properties, however, were not found in the five-element alloy, indicating the properties of these special alloys are highly dependent on their compositions.

“Increased oxidation means they are less stable, which could potentially increase the activity for catalysis,” said Morris. “And unusual bond lengths can change the properties and maybe make a more promising catalytic pathway.”

The group’s next step will be to try and link the changes in structure seen in this experiment to the alloys’ catalytic activity. “If we are able to find certain structural properties that are associated with a high catalytic activity, that would allow us to design more effective catalysts in the future,” said Morris.

Read more on the CLS website

Image: APS

Blowing in the wind

Monitoring dust from legacy mine tailings to keep communities safe

Queen’s university researchers have studied dust blown from legacy mine tailings at the Giant Mine in Yellowknife, NWT and determined vital information to inform future remediation efforts.

Using the CLS@APS, the researchers were able to determine the chemical form of arsenic in dust particles sourced from the Giant Mine tailings which intermittently blow into nearby communities.

“The synchrotron is really useful for looking at dust because you have this really tiny micron scale beam that you can focus on individual dust particles and get really good data,” said Queen’s researcher Alex Bailey, who conducted the study as part of her Master’s.

Giant Mine is a decommissioned gold mine located 5 km North of Yellowknife that is currently being remediated. The main concern around this site is the existence of toxic-to-humans arsenic trioxide which was formed as a byproduct of ore processing in the 1950s and 60s. Arsenic trioxide had been previously found in local soils and lake sediments, and there was a concern from local residents that arsenic trioxide may be present in dust generated from surface tailings which intermittently blows into the community. It was important for the wellbeing and peace of mind of nearby community members to understand what dust from these tailings might carry.

By analyzing dust-sized material from the surface of the mine tailings and dust captured from a strategic location using detailed mineralogical analysis, synchrotron, and more conventional techniques, the team was able to identify what forms the arsenic would take and its implications for human health.

Read more on the CLS website

Image: Alex Bailey at the APS synchrotron collecting uXRD and uXRF data for sieved tailings dust samples

Promising new extra-large pore zeolite

An international research team, led in Spain by CSIC scientist Miguel A. Camblor, has discovered a stable aluminosilicate zeolite with a three dimensional system of interconnected extra-large pores, named ZEO-1.

Zeolites are crystalline porous materials with important industrial applications, including uses in catalytic processes. The pore apertures limit the access of molecules into and out of the inner confined space of zeolites, where reactions occur.

The research, published in Science, proved that ZEO-1 possesses these “extra-large” pores of around 10 Å (1 angstrom equals one ten billionth of a meter), but also smaller pores of around 7 Å, which is actually the size of traditional “large” pores.

Because of its porosity, strong acidity and high stability, ZEO-1 may find applications as a catalyst in fine chemistry for the production of pharmaceutical intermediates, in controlled substance release, for pollution abatement or as a support for the encapsulation of photo- or electroactive species (they react to light or an electric field).

“The crossings of its cages delimit super boxes, open spaces that can be considered nanoreactors to carry out chemical reactions in their confined space”, explains Miguel A. Camblor, researcher at the Instituto de Ciencia de Materiales de Madrid – CSIC.

To prove that this new zeolite may be useful in applications involving bigger molecules, researchers measured the adsorption to the inner surface of the zeolite of the dye Nile red – a big molecule. Moreover, they tested its performance in fluid catalytic cracking of heavy oil, a process the world still relies on to produce fuels. In both processes, the new zeolite performed better than the conventional large pore zeolite used nowadays.

This research is the result of an international collaboration between eight research centers in China, the USA, Sweden and Spain. The team was led by Fei-Jian Chen (Bengbu Medical College, China), Xiaobo Chen (China University of Petroleum), Jian Li (Stockholm University) and Miguel A. Camblor (Instituto de Ciencia de Materiales de Madrid, CSIC).

Structure determination with synchrotron light

The zeolite was discovered following a high-throughput screening methodology. The structure solution was challenging because the zeolite has a very complex structure, with a small crystal size (<200nm) but an exceedingly large cell volume.

“The combination of electron diffraction data with synchrotron powder X-ray diffraction data collected at the MSPD beamline of the ALBA Synchrotron and the Argonne National Laboratory (USA) made possible the accurate structure determination of ZEO-1″, says Camblor.

Read more on the ALBA website

Image: A perspective view of the extra-large pore of ZEO-1 along (100)

APS helps Pfizer create Covid-19 antiviral treatment

Pharmaceutical company Pfizer has announced the results of clinical trials of its new oral antiviral treatment against COVID-19. The new drug candidate, Paxlovid, proved to be effective against the SARS-CoV-2 virus, which causes COVID-19, according to results released by Pfizer on Nov. 5.

Scientists at Pfizer created Paxlovid with the help of the ultrabright X-rays of the Advanced Photon Source (APS), a U.S. Department of Energy (DOE) Office of Science user facility at DOE’s Argonne National Laboratory.

“Today’s news is a real game-changer in the global efforts to halt the devastation of this pandemic,” said Albert Bourla, chairman and chief executive officer of Pfizer, in a company press release. ​“These data suggest that our oral antiviral candidate, if approved or authorized by regulatory authorities, has the potential to save patients’ lives, reduce the severity of COVID-19 infections and eliminate up to nine out of 10 hospitalizations.”

DOE invests in user facilities such as the APS for the benefit of the nation’s scientific community, and supports biological research as part of its energy mission. This research has been critical in the fight against COVID-19. The DOE national laboratories formed the National Virtual Biotechnology Laboratory (NVBL) consortium in 2020 to combat COVID-19 using capabilities developed for their DOE mission, and that consortium helps support research into antiviral treatments such as Paxlovid.

Work to determine the structure of the antiviral candidate was done at the Industrial Macromolecular Crystallography Association Collaborative Access Team (IMCA-CAT) beamline at the APS, operated by the Hauptman-Woodward Medical Research Institute (HWI) on behalf of a collaboration of pharmaceutical companies, of which Pfizer is a member.

As a member of IMCA-CAT, Pfizer routinely conducts drug development experiments at the APS, and the process of narrowing down and zeroing in on this drug candidate was performed over many months, according to Lisa Keefe, executive director of IMCA-CAT and vice president for advancing therapeutics and principal scientist at Hauptman-Woodward Medical Research Institute. IMCA-CAT, she said, delivers quality results in a timely manner, much faster than the home laboratories of the companies themselves can do.

Read more on the APS website

Image: The IMCA-CAT beamline at the Advanced Photon Source, where work was done to determine the structure of Pfizer’s new COVID-19 antiviral treatment candidate.

Credit: Lisa Keefe, IMCA-CAT/Hauptman-Woodward Medical Research Institute

Laurent Chapon to lead Argonne’s Advanced Photon Source

Laurent Chapon has been appointed director of the Advanced Photon Source (APS). Chapon will lead the Photon Sciences Directorate at the U.S. Department of Energy’s Argonne National Laboratory through a massive upgrade of the user facility.

Lemont, IL – October 7, 2021 – The U.S. Department of Energy’s (DOE) Argonne National Laboratory has named Laurent Chapon as associate laboratory director for Photon Sciences and director of the Advanced Photon Source (APS), a DOE Office of Science User Facility at Argonne. He will begin his new role on January 10, 2022.

Chapon will join Argonne from Diamond Light Source in the United Kingdom, where he has been the director of physical sciences since 2016. Chapon led the scientific strategy in this division and oversaw five of Diamond’s eight science groups, which encompasses 22 X-ray beamlines and two electron microscopes. He led groups dedicated to technological advancements in optics, metrology and detectors technology at the facility and oversaw the Project Office, User Office, and Experiment Hall groups.

As part of Argonne’s senior management team, Chapon will lead the APS through a time of extraordinary change. The APS Upgrade project will result in a transformed facility that will generate X-ray beams up to 500 times brighter than those it currently delivers. This will require a year-long shutdown of the APS, currently scheduled to begin in April of 2023, and will keep the facility at the forefront of the world’s light sources for scientific discovery.

Read more on the Argonne National Laboratory website

Image: Laurent Chapon

Credit: Lise Chapon

Probing the Structure of a Promising NASICON Material

As physicists, materials scientists, and engineers continue striving to enhance and improve batteries and other energy storage technologies, a key focus is on finding or designing new ways to make electrodes and electrolytes.  One promising avenue of research involves solid-state materials, making possible batteries free of liquid electrolytes, which can pose fire and corrosion hazards.  An international group of researchers joined with scientists at Argonne National Laboratory to investigate the structure of crystalline and amorphous compounds based on the NASICON system, or sodium super-ion conductors. The work (using research carried out at the U.S. Department of Energy’s Advanced Photon Source [APS] and published in the Journal of Chemical Physics) reveals some substantial differences between the crystalline and glass phases of the NAGP system, which affect the ionic conductivity of the various materials.  The investigators note that the fraction of non-bridging oxygen (NBO) atoms appears to play a significant role, possibly altering the Na+ ion mobility, and suggest this as an area of further study.  The work provides fresh insights into the process of homogeneous nucleation and identifying superstructural units in glass ― a necessary step in engineering effective solid-state electrolytes with enhanced ionic conductivity. 

Because of their high ionic conductivity, materials with a NASICON structure are prime candidates for a solid electrolyte in sodium-ion batteries.  They can be prepared by a glass-ceramic route, which involves the crystallization of a precursor glass, giving them the usefulness of moldable bulk materials.  In this work, the research team specifically studied the NAGP system [Na1+xAlxGe2-x(PO4)3] with x = 0, 0.4 and 0.8 in both crystalline and glassy forms. Working at several different facilities, they used a combination of techniques, including neutron and x-ray diffraction, along with 27Al and 31P magic angle spinning and 31P/23Na double-resonance nuclear magnetic resonance spectroscopy.  The glassy form of NAGP materials was examined both in its as-prepared state and after thermal annealing, so that the changes on crystal nucleation could be studied.

Neutron powder diffraction measurements were performed at the BER II reactor source, Helmholtz-Zentrum Berlin, using the fine resolution powder diffractometer E9 (FIREPOD), followed by Rietveld analysis.  Further neutron diffraction observations were conducted at the Institut Laue-Langevin using the D4c diffractometer and at the ISIS pulsed neutron source using the GEM diffractometer.  X-ray diffraction studies were performed at X-ray Science Division Magnetic Materials Group’s beamline 6-ID-D of the APS, an Office of Science user facility at Argonne National Laboratory. 

Read more on the APS website

Image: Fig. 1. NASICON crystal structure showing the tetrahedral P(4) phosphate motifs (purple), octahedral GeO6 motifs (cyan) and Na+ ions (green). Oxygen atoms are depicted in red.

Researchers discover foam “Fizzics”

Chemical engineers at the University of Illinois Chicago and UCLA used the U.S. Department of Energy’s Advanced Photon Source (APS) in answering longstanding questions about the underlying processes that determine the life cycle of liquid foams. The breakthrough in understanding how liquid foams dissipate could help improve the commercial production and application of foams in a broad range of industries and could lead to improved products. Findings of the research were featured in the Proceedings of the National Academy of Sciences of the United States of America.

Foams are a familiar phenomenon in everyday lives — mixing soaps and detergents into water when doing dishes, blowing bubbles out of soapy water toys, sipping the foam off a cup of lattes or milk shake. Liquid foams can occur in a variety of natural and artificial settings. While some foams are produced naturally, as in bodies of water creating large ocean blooms on the beaches, others arise in industrial processes. In oil recovery and fermentation, for example, foams are a byproduct.

Whenever soapy water is agitated, foams are formed. They are mostly gas pockets separated by thin liquid films that often contain tiny molecular aggregates called micelles. Oily dirt, for example, is washed away by hiding in the water-phobic cores of micelles. In addition, fat digestion in our bodies relies on the role of micelles formed by bile salts.

Over time, foams dissipate as liquid within the thin films is squeezed out. Soap and detergent molecules that are by very nature amphiphilic (hydrophilic and hydrophobic) aggregate within water to form spherical micelles, with their outward-facing heads being hydrophilic and water-phobic tails forming the core.

Read more on the ANL website

Image: Micellar foam films show grayscale intensity variations that correspond to rich nanoscopic topography mapped using IDIOM protocols.

Credit: Chrystian Ochoa and Vivek Sharma/UIC

Tiny Chip-Based Device Performs Ultrafast Manipulation of X-Rays

Researchers from the U.S. Department of Energy’s Advanced Photon Source (APS) and Center for Nanoscale Materials at Argonne National Laboratory have developed and demonstrated new x-ray optics that can be used to harness extremely fast pulses in a package that is significantly smaller and lighter than conventional devices used to manipulate x-rays. The new optics are based on microscopic chip-based devices known as microelectromechanical systems (MEMS).

“Our new ultrafast optics-on-a-chip is poised to enable x-ray research and applications that could have a broad impact on understanding fast-evolving chemical, material and biological processes,” said research team leader Jin Wang from the X-ray Science Division Time Resolved Research (TRR) Group at the APS. “This could aid in the development of more efficient solar cells and batteries, advanced computer storage materials and devices, and more effective drugs for fighting diseases.”

In new results published in The Optical Society OSA) journal Optics Express, the researchers demonstrated their new x-ray optics-on-a-chip device (Fig. 1), which measures about 250 micrometers and weighs just 3 micrograms, using the TRR Group’s 7-ID-C x-ray beamline at the APS. The tiny device performed 100 to 1,000 times faster than conventional x-ray optics, which that tend to be bulky.

Read more on the APS website

Image: Fig. 1. The photograph shows two MEMS elements on a single chip (A), with the active elements of 250 µm × 250 µm, and the micrograph (B) highlighting the size of the diffractive element, as compared to a section of human hair (C).

Strong and resilient synthetic tendons produced from hydrogels

Human tissues exhibit a remarkable range of properties. A human heart consists mostly of muscle that cyclically expands and contracts over a lifetime. Skin is soft and pliable while also being resilient and tough. And our tendons are highly elastic and strong and capable of repeatedly stretching thousands of times per day. While limited success has been achieved in producing man-made materials that can mimic some of the properties of natural tissues (for instance polymers used as synthetic skin for wound repair) scientists have failed to create artificial materials that can match all the outstanding features of tendons and many other natural tissues. An international team of researchers has transformed a standard hydrogel into an artificial tendon with properties that meet and even surpass those of natural tendons. This new material was examined via electron microscopy and x-ray scattering to reveal the microscopic structures responsible for its outstanding features. The x-ray measurements were gathered at the U.S. Department of Energy’s (DOE’s) Advanced Photon Source (APS). The researchers have shown that their new hydrogel-based material can be modified to mimic a variety of human tissues and could also potentially be adapted to non-biological roles. Their results were published in the journal Nature.

Read more on the APS website

Image: Fig. 1. SEM images (left) showing the deformation of the mesh-like nanofibril network during stretching and corresponding in situ SAXS patterns (right). Scale bars, 1 μm (SEM images); 0.025 Å−1 (SAXS images)

Credit: From M. Hua et al., Strong tough hydrogels via the synergy of freeze-casting and salting out,” Nature 590, 594 (25 February 2021). © 2021 Springer Nature Limited

Under wraps: X-rays reveal 1,900-year-old mummy’s secrets

Researchers used the powerful X-rays of the Advanced Photon Source to see the preserved remains of an ancient Egyptian girl without disturbing the linen wrappings. The results of those tests point to a new way to study mummified specimens.

The mummified remains of ancient Egyptians hold many secrets, from the condition of the bodies to the artifacts placed within the burial garments. Now a team of researchers has found a way to unwrap those secrets, without unraveling the mummies themselves.

Three years ago, researchers from Northwestern University, in preparation for an exhibit on campus, carefully transported a 1,900-year-old mummy to the Advanced Photon Source (APS), a U.S. Department of Energy (DOE) Office of Science User Facility at DOE’s Argonne National Laboratory. There scientists used powerful X-ray beams to peer inside the layers of linen and resin to examine the 2,000-year-old bones and objects buried within.

Read more on the Argonne National Laboratory website

Image: In 2017, Stuart Stock, center, of Northwestern University, talks with Rachel Sabino, right, of the Art Institute of Chicago while Argonne scientist Ali Mashayekhi, left, makes adjustments to the apparatus holding a 1,900-year-old Egyptian mummy.

Credit: Mark Lopez / Argonne National Laboratory.

A kappa diffractometer for intermediate X-ray energies at APS beamline 29-ID

An ultra-high vacuum, non-magnetic kappa geometry diffractometer has been designed and commissioned for the resonant soft x-ray scattering (RSXS) branch of the X-ray Science Division (XSD) Intermediate Energy X-ray (IEX) beamline 29-ID at the Advanced Photon Source (APS). Beamline 29-ID is managed by the XSD Magnetic Materials Group; the APS is an Office of Science user facility at Argonne National Laboratory. There were three main design goals for this diffractometer: kappa geometry, non-magnetic, and high-precision. The kappa geometry was chosen to allow for a large q-range and space for a sample environment (electric or magnetic fields). Non-magnetic components were used for all the components above and including the κ-arm to avoid disturbing magnetic or electric fields during experiments. Lastly, the diffractometer precision requirement of a sphere of confusion (SOC) of less than 50 µm was a key driving factor for this instrument in terms of rotation stages and machining precision.

The complete diffractometer can be seen in Fig. 1(a), shown installed into the RSXS UHV vacuum chamber at 29-ID. The precise SOC (< 50 µm) requirement drove the design method. In order to reach this goal, it was decided that a combination of precision machining, Finite element analysis, and stage precision would be used instead of calibrating an error-correction table. This has the advantage that the upper bound of the SOC requirement can be achieved without any control hardware, making the device more robust.

Read more on the Advanced Photon Source Website

Image: Fig1. (a) Image of the commissioned kappa diffractometer inside the RSXS vacuum chamber on the APS 29-ID beamline with the main components identified. (b) A close up model of the components above the f axis. The model also shows the new thermal break and thermal strap.

New state-of-the-art beamlines for the APS

The two new beamlines will be constructed as part of a comprehensive upgrade of the APS, enhancing its capabilities and maintaining its status as a world-leading facility for X-ray science.

In a socially distanced ceremony this morning at the U.S. Department of Energy’s (DOE) Argonne National Laboratory, leaders from DOE, Argonne and the University of Chicago broke ground on the future of X-ray science in the United States.

Today’s small gathering marked the start of construction on the Long Beamline Building, a new experiment hall that will house two new beamlines that will transport the ultrabright X-rays generated by the Advanced Photon Source (APS) to advanced scientific instruments. It will be built as part of the $815 million upgrade of the APS, a DOE Office of Science User Facility and one of the most productive light sources in the world. The APS, which is in essence a stadium-sized X-ray microscope, attracts more than 5,000 scientists from around the globe to conduct research each year in many fields ranging from chemistry to life sciences to materials science to geology.

Read more on the Argonne National Laboratory website

Image : Artist’s rendition of the Long Beamline Building. The new facility will be built as part of a major upgrade of the APS and will house two new beamlines.

Credit: HDR Architects