ALBA collaborates in the discovery of a new muscular disease: myoglobinopathy

An international collaboration led by IDIBELL identifies the first disease caused by a mutation in myoglobin.

At the MIRAS beamline of the ALBA Synchrotron they could demonstrate the presence of oxidized lipids in the damaged muscle cells.
Researchers of the Bellvitge Biomedical Research Institute (IDIBELL) led by Dr. Montse Olivé have described in Nature Communications a new muscular disease caused by a mutation in the myoglobin gene. The study has been possible thanks to a collaboration with a group of geneticists from the University of Western Australia (UWA), led by Prof. Nigel Laing, and researchers from the Karolinska Institute (Stockholm, Sweden).

Myoglobin, the protein that gives muscles their red colour, has as its main function the transportation and intracellular storage of oxygen, acting as an oxygen reservoir when there are low levels (hypoxia) or a total lack thereof (anoxia). It also acts as scavenger of free radicals and other reactive oxygen species, avoiding cell damage due to oxidative stress.

>Read more on the ALBA website

Image: Left, Typical μFTIR spectra and their second derivative of the muscle tissue where the lipid region has been highlighted in orange and the protein region in blue; the inset shows the lipid/protein ratio (calculated from the Infrared spectra) on an optical image of a tissue section with sarcoplasmic bodies. The color bar represents intensity of the ratio: blue and red mean low and high lipid content, respectively. The scale bar is 4 microns. Right,  Infrared second derivative spectrum of the amide region of one sarcoplasmic body (green) showing an increase of β-sheet structures indicating protein aggregation. Second derivative of the amide region corresponding to the tissue surrounding the sarcoplasmic bodies (black).