Urea susbstitutes noble metal catalysts

… for the photodegradation of organic polluants.

A new laser-based technique developed by the Institute of Materials Science (ICMAB-CSIC) uses urea, a common substance in the chemical industry and a low-cost alternative to noble metal co-catalyst, to enable a more efficient, one-step production of hybrid graphene-based organic-inorganic composite layers for environmental remediation, photodegradation of antibiotic contaminants from wastewater. The composition and chemical bonds of the urea-enriched thin layers were studied in detail using synchrotron light at the ALBA Synchrotron.
Human activity is increasing the amount of pollutants in water and air, as well as in all sorts of materials at home and work place. The existence of antibiotic contamination is undeniably one of the most threatening challenges to date, at a time when antibiotic-resistant bacteria has already been flagged as the next world-wide pandemic crisis.
Semiconductor photocatalysts have long been investigated for environmental remediation because they can degrade or mineralize a wide range of organic contaminants as well as pathogens. Research focuses on addressing some drawbacks that prevent their use on a large scale. On the one hand, many photocatalysts are activated only by UV radiation which represents solely a small fraction of the total available solar emission. On the other hand, the recombination of the photogenerated  electron-hole pairs that enable the decomposition of the pollutant is usually faster than the oxidation reactions that cause the degradation of organic molecules. As a consequence, noble metal co-catalysts acting as electron scavengers, such as gold or platinum, are needed in the process.

Image: Researchers Ángel Pérez  del Pino and Enikö György from the ICMAB-CSIC together with Ibraheem Yousef, scientists responsible of MIRAS beamline at ALBA.

Mine tailings dumped into the sea analysed with synchrotron light

The case of Portmán Bay, at the Spanish Mediterranean coast, is one of the most extreme cases in Europe causing great impact on the marine ecosystem by disposal of mine tailings.

For more than 40 years, 60 million tonnes of mine waste were dumped directly into the sea, resulting from the open pit mining that took place in Sierra Minera in Cartagena. As a consequence, the Bay was literally filled with metal-rich artificial soil. Since 2014, a research group from the University of Barcelona (UB) has been studying Portmán Bay. Now, they have analysed samples of these sediments at ALBA because with synchrotron light they can obtain unprecedented information about the heavy metals contamination, such as arsenic.

Very few people know about Portmán Bay, where took place one of the most extreme cases of coastal ecological impact by mine activity in Europe. Figures speak for itself: the mining company Peñarroya dumped more than 60 million tonnes of mine waste into the sea through a 2km-long pipeline located at the west part of the bay. Over the years, the bay became totally filled with a mountain of artificial sediment. The shoreline moved 600m seaward and the trace of the pollution reached 12km out to sea.

>Read more on the ALBA website

Image: Miquel Canals putting sample supports, which were specifically designed and printed with 3D technology at ALBA, at the CLAESS beamline to be analysed with synchrotron light; with Carlo Marini, beamline scientist and Andrea Baza, PhD student from UB.

The ALBA synchrotron and Portugal boost their scientific collaboration

Science ministers from Portugal and Spain have visited ALBA, motivated by a collaboration agreement that promotes the Portuguese scientific community using the ALBA Synchrotron and also includes a training program for Portuguese postdoctoral researchers at ALBA.

On 11th February 2019, at the ALBA Synchrotron facility, an agreement has been signed to promote scientific collaboration between Spain and Portugal. The agreement has been signed by Caterina Biscari, director of ALBA, and Paulo Ferrão, president of the Fundação para a Ciência e a Tecnologia (FCT), under the auspices of Pedro Duque, minister of Science, Innovation and Universities of the Spanish Government, Manuel Heitor, minister of Science Technology and Higher Education of Portugal, and Àngels Chacón, regional minister of Business and Knowledge of the Catalan Government and current chair of the ALBA Rector Council.

The Portuguese scientific community has been using the ALBA Synchrotron since the beginning of its operation in 2012. Nowadays, Portugal is the 5th country that performs more experiments at ALBA, after Germany, France, Italy and the United Kingdom. They have obtained 60% of requested beamtime and have carried out experiments mainly in biology, protein crystallography and materials science.

>Read more on the ALBA website

Image: Images of the signing agreement ceremony, held at the ALBA Synchrotron. From left to right, Caterina Biscari, director of the ALBA Synchrotron, Àngels Chacón, regional minister of Business and Knowledge of the Catalan government, Pedro Duque, minister of Science, Innovation and Universities of the Spanish Government, Manuel Heitor, minister of Science Technology and Higher Education of Portugal, and Paulo Ferrão, president of the Fundação para a Ciência e a Tecnologia (FCT). In the last picture, members of the ALBA Synchrotron management, Joan Gómez Pallarés, General director of Research from the Catalan government, and Ramon Pascual, honorary president of ALBA.

Synchrotron light unveils new insights about amytrophic lateral sclerosis

Synergetic combination of different imaging and spectroscopic synchrotron techniques performed in ALBA and APS (USA) has discovered new aspects about astrocytes cells of this neurodegenerative disease.

Results, published in Analytical Chemistry, show significant differences between ALS and control astrocytes, including structural, chemical and macromolecular anomalies. Amyotrophic lateral sclerosis (ALS) is a fatal progressive neurodegenerative disease that causes the degeneration and death of neurons that control voluntary muscles. Still today the causes of this disease are unknown in 90% of the cases. However, some of them are caused by the mutation of sod1 gene. This gene encodes an enzyme (SOD1) that is involved in cellular protection against oxidative stress. Mutations dramatically alter the biochemical properties of SOD1, in particular its metal binding affinity and its anti-oxidative activity levels. But it is still unknown how these mutations block the normal cell function and lead to death of motor neurons. The ALBA Synchrotron, in collaboration with researchers from the University of Belgrade Pavle Andjus and Stefan Stamenković (who accomplished his PhD thesis using these results) and Vladan Lučić from Max Planck Institute of Biochemistry (Germany), has studied with synchrotron light techniques and classical biochemical laboratory approaches the cellular structural and biochemical changes of this gene mutation in a transgenic animal model of ALS. In particular, scientists have analysed astrocytes, one kind of brain cells that are key players in pathological processes of this disease.

>Read more on the ALBA website

Image: Researcher Tanja Dučić during the experiment performed at ALBA, at the MIRAS beamline.

From Pakistan to Barcelona, from scientists to friends

Shamila Imtiaz and Sidra Ibadat happily describe their experience during their research internship at ALBA within the framework of the Open Sesame European project.

Shamila Imtiaz (31 years old, PhD candidate and Chemistry junior scientist at PINSTECH Islamabad) and Sidra Ibadat (25 years old, MS Physics Student at the International Islamic University Islamabad) happily describe their experience during their research internship at ALBA. They come from Pakistan and have been granted by the H2020 Open Sesame project to spend 8 weeks at our facility in order to widen their expertise in synchrotron-based Fourier Transform Infrared Microspectroscopy SR-FTIRM at the infrared beamline MIRAS. For both of them, this is their first experience in Europe and, apart from their scientific activity, they are enjoying their walks, their talks and taking care of Shamila’s 9-month old baby. Additionally, ALBA is “proud to help in the development of the scientific careers of young mothers here and elsewhere”, says Miguel Ángel García Aranda, ALBA Scientific Director

“The situation in Pakistan has greatly changed in the past years, there are more women than men in science studies but it’s not easy to find funding opportunities to continue with the studies”, says Sidra. “The Open Sesame project has been a great opportunity for us for visiting and seeing how a synchrotron light source works and bring back all this knowledge to our country”, according to Shamila. “Having access to more sophisticated tools that those in Pakistan can boost our research projects”, continues Sidra.

>Read more on the ALBA website

Mycoplasma genitalium’s cell adhesion mechanism revealed

Mycoplasma genitalium is a sexually transmitted bacterium responsible for several genitourinary disorders.

An estimated 1% of the adult population is infected with this bacterium. Using XALOC beamline at the ALBA Synchrotron it has been defined the structure of the protein involved in the pathogen’s adhesion process. The discovery opens the door to defining new therapeutic strategies to fight this pathogen which is becoming more and more resistant to antibiotics.

Researchers from the Molecular Biology Institute of Barcelona (IBMB-CSIC) and the Institute of Biotechnology and Biomedicine (IBB-UAB) have discovered the mechanism by which the bacterium Mycoplasma genitalium (Mgen) adheres to human cells. This adhesion is essential for the onset of bacterial infection and subsequent disease development.
Mgen is an emerging pathogen responsible for several infectious genitourinary disorders. In men, it is the most common cause of urethritis (15-20%) while in women, it has been associated with cervicitis, pelvic inflammatory disease, premature birth and spontaneous abortions. So far, it was known that adherence to the genitourinary tract was possible thanks to proteins known as adhesins, which recognise specific cell surface receptors.
In this study, IBMB-CSIC researchers determined the three-dimensional structure of the Mgen’s P110 adhesins interacting with these cell receptors using X-rays diffraction and protein crystallography at the XALOC beamline. “We made a protein crystal of the P110 adhesin bound to these receptors and diffracted with the synchrotron’s X-rays to determine the exact position of the atoms within the protein, and we were able to decipher the three-dimensional structure”, explains IBMB researcher David Aparicio.

>Read more on the ALBA website

Image: Overall structure of P110. Two views, 90° apart from each other, of the extracellular region of P110 that is formed by a large N-domain, with a seven blade β-propeller (green), the crown (brown), and the C-domain (orange). In the right side panel the view is along the central axis of the β-propeller. The situation of the seven blades in the propeller is explicitly indicated showing that the two terminal blades I and VII are close to the C-terminal domain and opposite to the crown.

 

Analysing the structure of biopolymers for the food industry

A research group from the Institute of Agrochemistry and Food Technology (IATA-CSIC) in Valencia is using scattering techniques at the ALBA Synchrotron to develop new packaging systems made of biopolymers, an environmentally friendly solution for the food industry.

Plastic is the packaging material of most of the food we consume nowadays. This results in a severe problem as common plastics are made of petroleum – a limited resource with highly variable price – and supposes a huge environmental impact – most plastic wastes need more than 400 years to decompose.

Researchers from the Food Safety and Preservation department of the Institute of Agrochemistry and Food Technology (IATA-CSIC), located in Paterna (Valencia), are looking for more sustainable ways of producing food packaging with appropriate mechanical and chemical properties. They are investigating biopolymers that can be made from biomass such as algae.
“We need to look for alternative sources which do not compete with food. This is why marine resources such as algae and microalgae are very interesting. They proliferate very quickly, grow in a wide variety of environments and do not interfere with food production”, according to Ámparo López-Rubio, researcher at the IATA-CSIC.

>Read more on the ALBA website

Image: At the left, Juan Carlos Martínez, scientist from the ALBA Synchrotron with users Amparo López Rubio and Marta Martínez Sanz from IATA-CSIC at the NCD-SWEET experimental hutch.

Samtack uses ALBA Synchrotron light for improving food packaging

Thanks to the CALIPSOplus European project, Samtack company is analysing at ALBA nanoparticles contained in a new food packaging system that will prevent food oxidation and extend its lifetime.

We all expect to purchase high quality and fresh food that, even if it has been kept for few days in the supermarket shelf, it still maintains its optimum safety and quality such as well as flavor. Different ambient conditions can modify food quality: moisture can affect the crispness of the product, oxygen can oxidize food with large fat components (e.g. potato chips) and change its taste, while light can degrade vitamins from milk or even remove the aromatic and volatile components from ground coffee and off-taste. Hence, different barriers are required to protect food from moisture, oxygen or light and that’s the point where packaging plays a key role. Packaging acts as a barrier and extends the product’s shelf life while contributing to diminish the amount of food that is thrown away and avoiding overproduction of food.

Samtack, founded in 1988 and based in Esparreguera (Barcelona), is a manufacturer of glues and adhesives specialized in the sector of graphic arts and packaging. Samtack has developed a new flexible multilayer system, in collaboration with the University of Zaragoza and the Complutense University of Madrid, that contains Selenium nanoparticles and is capable to increase food shelf life.

>Read more on the ALBA website

Towards oxide-integrated epitaxial graphene-based spin-orbitronics

An international team of researchers from IMDEA Nanociencia and Complutense and Autónoma universities in Madrid, the Institut Néel in Grenoble and the ALBA Synchrotron in Barcelona has elucidated a new property of Graphene/Ferromagnetic interfaces: the existence of a sizable magnetic unidirectional interaction, technically a Dzyaloshinskii–Moriya Interaction of Rashba origin, which is responsible for establishing a chiral character to magnetic domain wall structures.

A major challenge for future spintronics is to develop suitable spin transport channels with long spin lifetime and propagation length. Graphene can meet these requirements, even at room temperature. On the other side, taking advantage of the fast motion of chiral textures, that is, Néel-type domain walls and magnetic skyrmions, can satisfy the demands for high-density data storage, low power consumption, and high processing speed. The integration of graphene as an efficient spin transport channel in the chiral domain walls technology depends on the ability to fabricate graphene-based perpendicular magnetic anisotropy (PMA) systems with tailored interfacial SOC.

Studies on graphene-based magnetic systems are not abundant and, typically, make use of metallic single crystals as substrates which jeopardize the exploration of their transport properties (since the current is drained by the substrate). To solve this challenge, the IMDEA Nanociencia leading team succeeded to fabricate high-quality epitaxial asymmetric gr/Co/Pt(111) structures grown on (111)-oriented oxide substrates. The quality of the interfaces was checked by low-energy electron diffraction and also by advanced high-resolution transmission microscopy at the Universidad Complutense de Madrid (UCM) microscopy centre and resonant X-ray specular reflectivity at BOREAS beamline at ALBA (see fig.1). The magnetic anisotropy and properties were investigated by magneto-optical Kerr magnetometry in IMDEA and Universidad Autónoma de Madrid (UAM) and complemented with element resolved XMCD magnetometry also at BOREAS beamline. Finally, the chirality of the magnetic domain walls was analysed using a customized magneto-optical Kerr effect microscope and pulse field electronics in collaboration with the team at Institut Néel in Grenoble.

>Read more on the ALBA website

 

A closer look of zink behaviour under extreme conditions

Researchers have explored the phase diagram of zinc under high pressure and high temperature conditions, finding evidence of a change in its structural behaviour at 10 GPa. Experiments profited from the brightness of synchrotron light at ALBA and Diamond.

These results can help to understand the processes and phenomena happening in the Earth’s interior.

The field of materials science studies the properties and processes of solids to understand and discover their performances. Synchrotron light techniques permit to analyse these materials at extreme conditions (high pressure and high temperature), getting new details and a deep knowledge of them.

Studying the melting behaviours of terrestrial elements and materials at extreme conditions, researchers can understand the phenomena taking place inside them. This information is of great value for discovering how these materials react in the inner core of Earth but also for other industrial applications. Zinc is one of the most abundant elements in Earth’s crust and is used in multiple areas such as construction, ship-building or automobile.

>Read more on the ALBA website

Figure: P-T phase diagram of zinc for P<16 GPa and T<1600K. Square data points correspond to the X-ray diffraction measurements. Solid squares are used for the low pressure hexagonal phase (hcp) and empty symbols for the high pressure hexagonal phase (hcp’). White, red and black circles are melting points from previous studies reported in the literature. The triangles are melting points obtained in the present laser-heating measurements. In the onset of the figure is shown the custom-built vacuum vessel for resistively-heated membrane-type DAC used in the experiments at the ALBA Synchrotron. 

Synchrotron light to study how sun radiation damages skin and hair

Researchers from the Institute of Advanced Chemistry of Catalonia (IQAC-CSIC) are investigating damage on skin and hair caused by ultraviolet sunlight. They have profited from the ALBA Synchrotron technology to see with high resolution and accurate detail the changes occurring at molecular level, not only at the surface of skin and hair, but also in their inner layers. The samples were previously treated with resveratrol, well-known antioxidant, to evaluate how effective is to develop new and better photoprotective treatments.

>Read more on the ALBA website

Experts disscuss about the future of European particle accelerators

On 19 and 20 July, the ALBA Synchrotron is hosting the 102nd Plenary ECFA meeting, with the participation of 70 researchers, including Dr. Fabiola Gianotti, CERN’s Director-General.

The European Committee for Future Accelerators (ECFA) is an advisory body for CERN Management, CERN Council and its Committees, and to other national and international organizations, on the long-term planning of European High-Energy Physics (HEP) facilities, accelerators and equipment adequate for the conduction of a valid high energy research program.

The participants of the plenary meeting will discuss, during two days, about different topics on high energy physics and the main HEP accelerator facilities in Europe will report on their activities. Fabiola Gianotti, CERN’s Director-General, will report on CERN activities and perspectives. The role of ECFA is of particular relevance in the period 2018-2020 due to the on-going update of the European Strategy for Particle Physics, which will shape the future of the HEP community in Europe and, in particular, what lays ahead for CERN after the High Luminosity LHC project (the upgrade of the Large Hadron Collider (LHC) that aims to increase its luminosity such that the accumulated data will be 10 times larger than with the present configuration).

>Read more on the ALBA website

How legionella manipulates the host cell by means of molecular mimics

Using synchrotron light, researchers from CIC bioGUNE have solved the structure of RavN, a protein that Legionella pneumophila uses for stealing functions and resources of the host cell.

Mimicry is the ability of some animals to resemble others in their environment to ensure their survival. A classic example is the stick bug whose shape and colour make him unnoticed to possible predators. Many intracellular pathogens also use molecular mimicry to ensure their survival. A part of a protein of the pathogen resembles another protein totally different from the host and many intracellular microorganisms use this capability to interfere in cellular processes that enable their survival and replication.

The Membrane Trafficking laboratory of the CIC bioGUNE in the Basque Country, led by Aitor Hierro, in collaboration with other groups from the National Institutes of Health in the United States, have been working for several years in understanding how the infectious bacterium Legionella pneumhopila interacts with human cells. During this research, experiments have been carried out at the XALOC beamline of the ALBA Synchrotron and I04 beamline of Diamond Light Source (UK). The results enabled scientists to solve the structure of RavN, a protein of L. pneumophila that uses this molecular mimicry to trick the infected cell.

>Read more on the ALBA website

Figure: (extract) Schematic representation of the structure of RavN1-123 as ribbon diagram displayed in two orientations (rotated by 90° along the x axis). Secondary elements are indicated as spirals (helices) or arrows (beta strands), with the RING/U-box motif colored in orange and the C-terminal structure colored in slate. (Full image here)

ALBA invites primary school students to experiment with science

Mision ALBA is an educational project beginning next academic year and a maximum of 250 primary school groups of 5th and 6th grade from all over Spain will be able to participate.

One mission, four phases: matter, force, energy and light. ALBA is looking for boys and girls to accept the challenge of dealing with synchrotron science! From now on, their teachers can register their groups at www.misionalba.es. The educational project is launched for the first time during the academic year 2018-2019 and up to 5,000 students can participate, totally free. The contents of the Misión ALBA respond to the demands of the official curriculum for this educational stage, including educational guidelines adapted for each autonomous region.

>Read more on the ALBA Synchrotron website

Nobel Prize Barry C. Barish visits ALBA

The Nobel Laureate in Physics for his role in the detection of gravitational waves has visited today the facility.

Accompanied by the director, Caterina Biscari, Ramon Pascual, honorary president, other members of the ALBA management and Enrique Fernández, former director of IFAE, Barry C. Barish has had the opportunity to visit the experimental hall and talk to different researchers who are performing their experiments this week at ALBA.

>Read more on the ALBA website

Picture: (from left to right), Enrique Fernández – former director of IFAE -, Barry C. Barish, Caterina Biscari and Ramon Pascual.

Magnetization ratchet in cylindrical nanowires

A team of researchers from Materials Science Institute of Madrid (CSIC), University of Barcelona and ALBA Synchrotron reported on magnetization ratchet effect observed for the first time in cylindrical magnetic nanowires (magnetic cylinders with diameters of 120nm and lengths of over 20µm).

These nanowires are considered as building blocks for future 3D (vertical) electronic and information storage devices as well as for applications in biological sensing and medicine. The experiments have been carried out at the CIRCE beamline of the ALBA Synchrotron. The results are published in ACS Nano.

The magnetic ratchet effect, which represents a linear or rotary motion of domain walls in only one direction preventing it in the opposite one, originates in the asymmetric energy barrier or pinning sites. Up to now it has been achieved only in limited number of lithographically engineered planar nanostructures. The aim of the experiment was to design and prove the one-directional propagation of magnetic domain walls in cylindrical nanowires.

>Read more on the ALBA website

Image: (extract) Unidirectional propagation of magnetization as seen in micromagnetic simulations and XMCD-PEEM experiments. See entire image here.