Analysing Alzheimer’s mechanisms with synchrotron light

Researchers from the ALBA Synchrotron and the Universitat Autònoma de Barcelona (UAB) have analysed with synchrotron light different Alzheimer’s aggregates, their location and their effect in cultivated neuronal cells.

Results, published in Analytical Chemistry, pave the way to better understand the development of this disease that affects more than 30 million people worldwide.

Memory loss, communications’ difficulties, personality and behaviour changes, orientation problems … Unfortunately, these symptoms are widespread in our society, since 30 million people worldwide and 1.5 in Spain suffer from the effects of Alzheimer’s, according to the World Health Organization (WHO) and the Spanish Confederation of Family Members of Alzheimer’s and other dementias patients (CEAFA), respectively. Alzheimer’s is the most important cause of dementia and is described as a multifactorial disease that leads to neuronal cell death. Nowadays, there is no effective treatment to fight against or to prevent it.

When a person has Alzheimer’s, amyloid plaques are generated inside his brain. They are made of deposits or aggregates of the amyloid beta peptide. This peptide – which comes from a protein that is necessary for cellular functioning – tends to be aggregated by adopting different sizes and morphologies, depending on the physical and chemical conditions around it. Although it is already known that the presence of the beta amyloid peptide, together with other factors such as oxidative stress, play a key role in the onset and development of the Alzheimer’s disease, it is not still clear what causes the disease and what the consequences are.

>Read more on the ALBA website

LEAPS initiative is making progress

ALBA is hosting the Coordination Board and Task Force meetings of the LEAPS Initiative, the League of European Accelerator-based Photon Sources.

LEAPS is a strategic consortium initiated by the Directors of the Synchrotron Radiation and Free Electron Laser (FEL) facilities in Europe. 19 facilities are taking part with the aim to offer a step change in European cooperation, through a common vision of enabling scientific excellence, solving global challenges, and boosting European competitiveness and integration.

These days, the ALBA Synchrotron is hosting the first face-to-face meeting of the Coordination Board with the participation of all facility representatives, followed by a meeting of the Task Force which is preparing a position paper to be submitted to the European Union at the end of March 2018. Rafael Abela, from the Paul Scherrer Institute in Switzerland, is chairing this task.

>Learn more about the LEAPS initiative

ALBA opens a liquid helium recovery plant

This installation allows recycling 80% of the liquid helium consumed in ALBA for operating the superconducting magnets and for experiments at ultra-low temperatures.

Despite being the second most abundant element in the universe, helium is very scarce on Earth and it is expected to be completely exhausted in a few decades. This inert gas, which is generated by fusing hydrogen atoms, is hidden in the subsoil of some natural gas reserves and its extraction is expensive and difficult to obtain. This is why different systems are being explored to recover helium and thus facilitate its application in the wide range of equipment in which it is used (beyond the popular balloons).

Liquid helium is basic for the operation of medical equipment such as magnetoencephalography (MEG) to cool down the superconducting magnets they contain to almost 270 ºC. It is also necessary for carrying out different scientific experiments; at the ALBA Synchrotron there are currently two superconducting magnets: one for producing synchrotron light in one of the beamlines and the other one for the sample area of another beamline, needing both a considerable amount of helium. Besides, four of the eight beamlines use it to keep cold the samples that must be analysed when they are irradiated with synchrotron light.

In order to guarantee the availability of this limited substance (it is foreseen that its cost will double in the near future), ALBA has built a plant to liquefy the helium gas and reuse it again once liquefied.

“With the new plant we can recycle 80% of the helium that we consume in our experiments and save more than € 10 per litre nowadays”, says Joan Casas, Head of the Engineering division of the ALBA Synchrotron.

>Read more on the ALBA website

 

Prehistoric Iranian glass under synchrotron light

Scientists from University of Isfahan in Iran have analysed in the ALBA Synchrotron how were made ancient Iranian glass objects that date back to 2.500 BC. These decorative glass pieces were excavated from the ziggurat of Chogha-Zanbil, a type of stepped pyramidal monument, inscribed on the UNESCO World Heritage List.

Ziggurats, the most distinct architectural feature of the Mesopotamian, are a type of massive stone structure built thousand years ago as a temple where deities lived. Nevertheless, Chogha-Zanbil, near Susa (Iran), is one of the few existent ziggurats found outside the Mesopotamian area. During ancient times Chogha-Zanbil was known as Dur Untaš, and may had been a sacred city of the Elamite Kingdom, an ancient Pre-Iranian civilization centred in the far West and Southwest of what is now modern-day Iran.

In order to determine the chemical composition of these unique samples, including one piece of ceramics and one piece of metallurgical crucible, a team of Iranian scientists came to ALBA Synchrotron to analyse them using X-Rays Powder Diffraction at the MSPD beamline. The MSPD analyses were carried out on more than 100 points on the glass objects. Synchrotron light enabled them to obtain high resolution diffraction patterns, from whose interpretation researchers have deduced the exact composition of the clay based structure as well as glassy part of the samples.

>Read more on the ALBA website

Image: The glass objects were originally used at the walls and doors of the tempel Chogha-Zanbil.
Credit: Mohammadamin Emami

Control of magnetoresistance in spin valves

Molecules, due to their wide-ranging chemical functionalities that can be tailored on demand, are becoming increasingly attractive components for applications in materials science and solid-state physics. Remarkable progress has been made in the fields of molecular-based electronics and optoelectronics, with devices such as organic field-effect transistors and light emitting diodes. As for spintronics, a nascent field which aims to use the spin of the electron for information processing, molecules are proposed to be an efficient medium to host spin-polarized carriers, due to their weak spin relaxation mechanisms. While relatively long spin lifetimes are measured in molecular devices, the most promising route toward device functionalization is to use the chemical versatility of molecules to achieve a deterministic control and manipulation of the electron spin.

Spin-polarized hybrid states induced by the interaction of the first molecular monolayers on ferromagnetic substrates are expected to govern the spin polarization at the molecule–metal interface, leading to changes in the sign and magnitude of the magnetoresistance in spin-valve devices. The formation of spin-polarized hybrid states has been determined by spin-polarized spectroscopy methods and principle-proven in nanosized molecular junctions, but not yet verified and implemented in large area functional device architectures.

>Read more on the ALBA website

Image: Magnetoresistance (top) and X-ray spectroscopy (bottom) measurements, evidencing the control of the magnetoresistance sign and amplitude by engineering spin valves with NaDyClq/NiFe and NaDyClq/Co interfaces, and their corresponding interfacial molecule-metal hybridization states.

Promoting gender equality in Science and Technology

More than 150 high school students from Barcelona have visited the ALBA Synchrotron

The event aimed at fighting against stereotypes and prejudices linked to research environments. The event, which had the support of the Barcelona City Council, has been open by the first Deputy Mayor of Barcelona, Mr. Gerardo Pisarello.

The near future will demand more professionals with skills in science and technology. However, women in STEM careers (Science, Technology, Engineering and Maths) only represent 15% of all the university undergraduates, according to the Ministry of Education, Culture and Sport for the period 2015-2016.

With the aim of stimulating scientific vocations, guaranteeing gender equality and opportunities and avoiding clichés that separate women from scientific and technological environments, the ALBA Synchrotron has launched the STEM Preparades project. It consisted of a series of workshops where women scientists and engineers from ALBA came to the classrooms, complemented by a visit where students had the opportunity to know in first-hand the job and workspace of the ALBA staff, as well as doing hands-on activities related to synchrotron light

>Read more on the ALBA website

Call open for industry (SMEs) Access

The European project CALIPSOplus is funding industry (SMEs) trans-national access to light sources. Call for proposals is now open for SMEs.

The European project CALIPSOplus is funding industry (SMEs) trans-national access to light sources. Call for proposals is now open for SMEs.

The European project CALIPSOplus brings together 19 partners offering access to 14 synchrotrons and 8 FELs in Europe and the Middle East. In particular, the project is funding industry (SMEs) trans-national access to light sources. Call for proposals is now open for SMEs.

 

>Read more on the ALBA website

Electrical hiding of magnetic information

Results have been published in Sientific Reports.

Researchers have proved the ability of peculiar magnetic materials to hide magnetic information and reveal it under certain conditions and at room temperature.

Since the 1950’s, magnetic materials have been used to store all kinds of information. Magnetically stored information is convenient because it is easily accessible using very well-known magnetic data reading procedures. However, sensitive information must be carefully stored to ensure confidentiality; thus easy access becomes a bad instead of a good feature. The optimal way to prevent unauthorised information access is to make it invisible.

>Read more on the ALBA website

Training to students from the Middle East

Students from SESAME members have been awarded to work in European light source laboratories in 2018.

OPEN SESAME is a Horizon 2020 project, which began on 1 January 2017 and runs until the end of 2019. It provides training opportunities for the SESAME light source in Jordan. An intergovernmental organisation, SESAME’s members are Cyprus, Egypt, Iran, Israel, Jordan, Pakistan, the Palestinian Authority and Turkey. This call for Fellowships was open to students working towards Masters or Doctoral degrees in the realm of light source science in any of these Members.

Some 49 applications were received. After scrutiny by an expert committee, nine places were offered, with six candidates in reserve. The successful applicants represent four SESAME Members, with two coming from Egypt and two from Iran, four are from Pakistan and one is from Turkey. Seven are women and two are men, and they will each be spending a minimum of eight weeks between February and June 2018 in European labs. Their fields of interest are all areas that will be addressed by SESAME’s phase-one beamlines, namely powder diffraction, X-ray absorption spectroscopy, infrared microspectroscopy, macromolecular crystallography and X-ray tomography. These techniques address questions ranging from life sciences where antibiotic resistance in bacteria and the interactions of essential oils and macromolecules will be investigated by single crystal diffraction, to geology where oil and gas flow properties in porous rock will be characterised by hard X-ray micro-tomography.

CSIC and ALBA sign a collaboration agreement

The aim: cooperating in the development of scientific research and technological innovation activities.

ALBA receives more than 200 CSIC researchers per year, performing 20% of the experiments conducted in the facility.

Madrid, 10th October 2017. The president of the Spanish National Research Council (Consejo Superior de Investigaciones Científicas, CSIC), Emilio Lora-Tamayo, and the director of the ALBA Synchrotron, Caterina Biscari, have signed today a collaboration agreement to develop projects and research programs in the scientific areas shared by both institutions.

The objectives of this collaboration include the advice, support and information exchange related to scientific activities. In addition, the document establishes the cooperation to train research and technical staff as well as to promote the common activities that pursue social awareness of science and technological innovation. The agreement also foresees staff exchanges and joint research units in areas of common interest. ALBA receives more than 200 CSIC researchers per year, performing 20% of the experiments conducted in the facility. This agreement expands the ongoing collaborations between both institutions, such as the participation in European research projects, the development of a helium recovery plant in ALBA or having CSIC visiting members at the ALBA Synchrotron.

New insights about malaria parasites infection mechanisms

Unraveled details about how the malaria parasite acts after invading the red blood cells.

This highlight has been possible thanks to two advanced microscope techniques combination: X-ray fluorescence microscopy and soft X-rays tomography, this one conducted in ALBA Synchrotron. Infected red blood cells image analysis offer new information that could yield new drugs design against malaria, an illness that claims over 400.000 lives each year.
Plasmodium falciparum causes the malaria disease. This parasite, transmitted through mosquito sting, infects red blood cells of its victim. Once inside, it uses hemoglobin (the protein in charge of oxygen transport) as a nutrient. When it is digested, iron is released in a form of heme molecules. These heme molecules are toxic to the parasite, but it has a strategy to make them harmless: it packs heme in pairs and finally they are packed forming hemozoin crystals. In this way, poisonous iron is locked up and no longer will be a threat for the parasite.


>Read More on the ALBA website

Infographic: Model for biochemistry processes that occur inside the parasite. The parasite takes the hemoglobin from the red blood cell (RBC)
1 and digests it inside the digestive vacuole (DV)
2. as a consequence, heme groups are released
3. and HDP protein packages them in pairs (heme dimers)
4. finally, in the crystallization process these dimers are converted in hemozoin crystals
5. blue arrow points out the suggested feedback mechanism that regulates hemoglobin degradation.

Emergent magnetism at transition-metal-nanocarbon interfaces

Researchers have shed light on the origin of the magnetism arising at carbon/non-magnetic 3d,5d metal interfaces

These results may allow the manipulation of spin ordering at metallic surfaces using electro-optical signals, with potential applications in computing, sensors, and other multifunctional magnetic devices.

Interfaces are key in solid state and quantum physics, controlling many fundamental properties and enabling emergent interfacial, bi-dimensional like phenomena. Therefore they offer potential opportunities for designing hybrid materials that profit from promising combinatory effects.

In particular, the fine-tuning of spin polarization at metallo–organic interfaces opens a realm of possibilities, from the direct applications in molecular spintronics and thin-film magnetism to biomedical imaging or quantum computing. This interaction at the interface can control the spin polarization in magnetic field sensors, generate magnetization spin-filtering effects in non-magnetic electrodes or even give rise to magnetic ordering when non-magnetic elements such as diamagnetic copper or paramagnetic manganese are put in contact with carbon/fullerenes at such interfaces.

 

>Read More

Identification of a mineral that until now was only present in meteroites

X-ray microdiffraction experiments were done to determine the crystalline structure of chladniite

Researchers from the Institute of Materials Science of Barcelona (ICMAB-CSIC), the Autonomous University of Barcelona (UAB), and the National University of Córdoba (Argentina), in collaboration with researchers of the ALBA Synchrotron, have identified a mineral in the region of Córdoba (Argentina), until now only observed in meteorites.

The study, published in European Journal of Mineralogy, affirms that the mineral is chladniite, a complex phosphate belonging to the fillowite group, which contains sodium, calcium, magnesium and iron, and has a trigonal structure. It has been found in a pegmatite, an igneous (magmatic) rock, formed from the slow cooling and solidification of magma.

>Read More