Imaging dendrite growth in zinc-air batteries

SXCT captures unprecedented detail of dendrite formation, growth and dissolution

Modern life runs on rechargeable batteries, which power all of our mobile devices and are increasingly used to power vehicles and to store energy from renewable sources. We are approaching the limits of lithium-ion battery technology in terms of maximum energy capacity, and new technologies will be needed to develop higher capacity rechargeable batteries for the future. One class of promising candidates is metal-air batteries, in particular zinc-air batteries that have a high theoretical energy density and low estimated production costs. However, zinc-air batteries present certain challenges, in key areas such as cycle life, reversibility and power density. The formation of metal dendrites as the battery charges is a common cause of failure, as dendrites can cause internal short circuits and even thermal runaway. (Thermal runaway is a sequence of exothermic reactions that take place within the battery, leading to overheating and potentially resulting in fire or an explosion. It is also a problem in lithium-ion batteries, and the subject of ongoing research.) In work recently published in Joule, a team of researchers from Imperial College, London, University College London, the University of Manchester and the Research Complex at Harwell carried out in situ experiments investigating how dendritic growth can cause irreversible capacity loss, battery degradation and eventually failure.
>Read more on the Diamond Light Source website

Image: (extract, see full image here) Single dendrite and dendritic deposits inside and on top of the separator (FIB-SEM)