Worldwide scientific collaboration develops catalysis breakthrough

A new article  just published in Nature Catalysis shows the simple ways of controlling the structure of platinum nanoparticles and tuning their catalytic properties. 

Research led by Cardiff Catalysis Institute (CCI) in collaboration with scientists from Lehigh University, Jazan University, Zhejiang University, Glasgow University, University of Bologna, Research Complex at Harwell (RCaH), and University College London have combined their unique skills to develop and understand using advanced characterisation methods (particularly TEM and B18 at Diamond Light Source), how it is possible to use a simple preparation method to control and manipulate the structures of metal nanoparticles. These metal nanoparticles are widely used by industry as innovative catalysts for the production of bulk chemicals like polymers, liquid fuels (e.g., diesel, petrol) and other speciality chemicals (pharmaceutical products).

>Read more on the Diamond Light Source website

Image: Andy Beale works at Diamond Light Source.

Pirbright Institute grants a new licence for FMDV vaccine development

The Pirbright Institute and its research partners have granted MSD Animal Health an exclusive commercial licence for a new, effective and affordable vaccine to protect livestock against several serotypes of foot-and-mouth disease virus (FMDV). The new vaccine is more stable than current foot-and-mouth disease (FMD) vaccines and is less reliant on a cold-chain during vaccine distribution – characteristics that give the vaccine greater potential for helping to relieve the burden placed on regions where the disease is endemic in large parts of Africa, the Middle East and Asia. These developments have been possible, thanks to a long-standing collaboration between Diamond Light Source, Pirbright, the University of Oxford, the University of Reading and MSD Animal Health, and the vaccine has been developed over the years from basic science to animal trials. This work has been supported by funding from the Wellcome Trust to speed up commercialisation.

Professor David Stuart, Life Sciences Director at Diamond Light Source and MRC Professor in Structural Biology at the University of Oxford, noted:

We have been working to achieve something close to the holy grail of vaccines. Instead of traditional methods of vaccine development, using infectious virus as its basis, our team synthetically created empty protein shells to imitate the protein coat that forms the strong outer layer of the virus. Diamond’s visualisation capabilities and the expertise of Oxford University in structural analysis and computer simulation, enabled us to visualise in detail something invisible in a normal microscope and to enhance the design, atom by atom, of the empty shells. The key thing is that unlike the traditional FMDV vaccines, there is no chance that the empty shell vaccine could revert to an infectious form. The licence that has just been granted suggests that the work will have a broad and enduring impact on vaccine development.

>Read more on the Diamond Light Source website

Diamond shines its light on Moon Rocks, Martian meteorites & Vesta

An international collaboration involving scientists in Tenerife, the US and the UK, have used Diamond Light Source, the UK’s national synchrotron to investigate the effect of gravity on rocky planets. They examined three billion+ year old rocks from the Moon collected during the Apollo missions, as well as meteorites from Mars, Vesta, and other environments collected in Antarctica.
The team – led by Dr Matt Pankhurst, Instituto Volcanológico de Canarias/(the Canarian Volcanlogical Institute (INVOLCAN) with co-investigators Dr Ryan Zeigler, NASA; Dr Rhian Jones, University of Manchester; Dr Beverley Coldwell, ITER; Dr Hongchang Wang, Diamond Light Source; Dr Robert Atwood, Diamond Light Source and Dr Nghia Vo, Diamond Light Source – aims to use the samples to make comparisons between processes and timescales that form similar rocks that are collected from different gravitational conditions.